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ABSTRACT

An effective approach in finite element analysis of the stress

field at the traction free boundary of a solid continuum was studied.

Conventional displacement and Assumed Stress Hybrid finite elements

were used in determination of stress concentrations around circular

and elliptical holes. Specialized Hybrid elements were then developed

to improve satisfaction of prescribed traction boundary conditions.

Results of the stress analysis indicated that finite elements which

exactly satisfy the free stress boundary conditions are most accurate

and efficient in such problems. A general approach for Hybrid finite

elements which incorporate traction free boundaries of arbitrary geom-

etry was formulated.





TABLEOF CONTENTS

PAGE

Abstract .......................................................... i

Chapter I. Introduction ........................................... 3

i. 1 Objective ............................................. 3

Chapter 2. The AssumedStress Hybrid Element...................... 5

2.1 The Modified ComplementaryEnergy Principle ........... 5

2.2 The Hellinger-Reissner Principle ...................... 8

2.3 Solution Of The Discretized Equations ................. 9

2.4 Constraint Conditions On The Assumed Stresses ......... Ii

2.5 Computation Of The Stresses ........................... Ii

2.6 Implementation Considerations ......................... 12

Chapter 3. Example Problem ........................................ 15

Chapter 4. A 4-8 Variable Node Hybrid Isoparametric Quadrilateral

Element ................................................ 20

4.1 Objective ............................................. 20

4.2 Formulation Of Element HISQUE ......................... 21

4.2.1 The Assumed Stresses ........................... 21

4.2.2 The Strain Matrix .............................. 23

4.2.3 Numerical Integration And Implementation ....... 28

4.3 Results And Discussion ................................ 32

4.3.1 Plate With Circular Hole ....................... 32

4.3.2 Plate With Elliptical Hole ..................... 36

4.4 Concluding Remarks .................................... 42

iii
PRECEDING PAGE BLAF_K NOT F;LMED



PAGE

Chapter 5. A 7-10 Variable Node Hybrid Isoparametric Quadrilateral

Element ............................................... 44

5.1 Introduction And Objective ............................ 44

5.2 The Boundary Point Matching Technique ................. 44

5.3 Formulation Of Element HEL710 ......................... 51

5.3.1 The Assumed Stresses ........................... 51

5.3.2 Interpolation Functions And The Strain Matrix.. 51

5.3.3 Implementation ................................. 53

5.4 Results And Discussion ................................ 53

5.4.1 Plate With Circular Hole ....................... 53

5.4.2 Plate With Elliptical Hole ..................... 55

5.5 Concluding Remarks .................................... 55

Chapter 6. A Four-Node Element With A Circular Traction Free Edge 58

6.1 Introduction And Objective ........................... 58

6.2 Formulation Of Element PET4 .......................... 58

6.2.1 The Assumed Stresses .......................... 59

6.2.2 Displacement Interpolations ................... 63

6.2.3 Implementation And Numerical Integration ...... 68

6.2.4 Element PET4X5 ................................ 72

6.3 Results And Discussion ............................... 75

6.4 Concluding Remarks ................................... 77

Chapter 7. Conclusion ............................................ 80

7.1 An Eclectic Approach ................................. 80

7.2 Recommended Research ................................. 81

iv



Appendix A. Satisfaction Of Free Traction Boundary Condition In

AssumedStress Hybrid Isoparametric Finite Elements

A.I Introduction And Objective .........................

A.2 Curvilinear Coordinates Of Isoparametric

Transformation ....................................

A.3 The Boundary Normal And Traction Constraints .......

A.4 Implementation .....................................

A.4.1 The AssumedStresses ........................

A.4.2 The Strain Matrix ...........................

A.5 Extension To Solid Elements........................

Appendix B. Computer Programs...................................

B.I Element HISQUE.....................................

B.2 Element HEL710.....................................

B.3 Element PET4/12....................................

B.4 Element PET4X5.....................................

References ......................................................

PAGE

83

83

83

86

94

94

i01

103

106

106

116

125

133

141

v





CHAPTER1

Introduction

The "Finite Element Method" has proven to be an effective and con-

venient approach to solution of problems of continuum mechanics. Orig-

inally conceptualized in the 1950s as a tool in solving problems of

elasticity and structural mechanics [i], the finite element method has

been increasingly used in many different fields of engineering, applied

mathematics, and physics. Rigorous mathematical formulation of the

method based on different variational principles has afforded scientists

greater flexibilities in the selection of the problem, formulation of

the solution, and implementation of the method. Today finite elements

are used in problems of heat transfer and fluit flow, as well as the

traditional structural mechanics for which they were developed.

The well known assumed displacement approach, based on the prin-

ciple of minimum potential energy [2], [3] is widely used in finite

element formulations of structural mechanics. Although a successful

method in many applications, inherent drawbacks of the formulation do

exist. In the assumed displacement formulation the requirement of dis-

placement compatibility is identically satisfied throughout the element,

by selection of an appropriate set of displacement interpolations. This

selection process is not always guaranteed and in fact has posed dif-

ficulties in construction of conventional plate bending elements. In

the displacement model, equilibrium of applied forces and the resultant

stresses is in general not satisfied except in the limiting case where



more and more degrees of freedom are used in modeling the structure

until monotonic convergence is achieved with compatible elements. Since

in the assumeddisplacement formulation stresses are obtained by dif-

ferentiation of the displacements, any error of the displacement solu-

tion is amplified in this process and will hence introduce distortion

or noise in the stress or strain solution. It is for this reason that

when stress concentrations exist in the vicinity of structural discon-

tinuities or supports, a finer meshof elements is always used. The

compatible assumeddisplacement approach will in principle underestimate

the displacement solution by overestimating the stiffness of the struc-

ture.

On the other hand, finite elements can be formulated based on the

principle of minimumcomplementary energy [3]. In this approach the

stresses satisfy the equilibrium conditions and becomethe unknown

variables directly solved for. In principle the minimumcomplementary

energy formulation will overestimate the displacement solution by under-

estimating the structural stiffness. Since the condition of displace-

ment continuity along interelement boundaries is not satisfied, the

formulation will generate incompatible finite elements.

As introduced by Pian [4][5], the assumed stress hybrid formula-

tion relaxes displacement interpolation requirements critical to the

assumed displacement model, while assuring the interelement compat-

ibility condition not achieved by the equilibrium model. Rigorously

formulated by Tong and Pian [6], the hybrid model is based on a modified

complementary energy principle in which stresses are the variables

2



directly solved for.

i.i 0bJective

For an accurate estimation of the stress field at the streee free

boundary of a solid continuum, it is desirable to choose finite elements

that satisfy the prescribed stress boundary conditions. For such prob-

lems, hybrid stress formulation becomes a more logical alternative be-

cause requirements of stress equilibrium and free boundary traction can

be simultaneously satisfied.

To assess the effectiveness of assumed stress hybrid elements under

prescribed free traction conditions, stress concentrations around cir-

cular and elliptical holes subjected to unidirectional tension were

examined. For the purpose of this investigation, three distinct hybrid

elements are studied. The first study examines the effectiveness of

regular isoparametric hybrid elements that do not meet the condition of

free boundary traction. The performance of these elements are then

judged against conventional displacement based isoparametric elements

with regard to solution accuracy and efficiency. Next a second class

of hybrid elements that approximately satisfy the prescribed free-

traction boundary condition, via the boundary point matching technique,

is considered. Finally, the advantage of using hybrid elements that

identically satisfy the traction-free boundary condition is examined

in the special case of a circular boundary. In each case finite ele-

ment stress solutions are obtained for a comparative study against the

analytical solution. A general formulation for assumed stress hybrid



finite elements that incorporate a traction-free boundary of arbitrary

geometry is presented.

4



CHAPTER 2

The Assumed Stress Hybrid Element

Formulation of the assumed stress hybrid element is in general

based on either the stationary value of the modified complementary

energy _ , or of the Hellinger-Reissner principle _ [3]. It can be

shown that for a given set of assumed stresses these formulations pro-

duce identical results [5]. Thus depending on the problem at hand,

ease of implementation or economical considerations may prove one

formulation advantageous to the other.

2.1 The Modified Complemgntary Energy Principle

In the modified complementary energy principle, stationary value

of the functional _c is established [3];

where:

5_

T_

/ 0"r5 ¢'dV_ -r d5 + a d5

i " - - ¢. ~

Number of elements.

Spatial domain of element n.

Boundary of Vn .

Portion of _L_ where tractions are prescribed.

Self equilibrating stresses.

Compliance matrix.

Traction matrix.

(2.1)



w

T .:

Displacement matrix.

Prescribed tractions.

Although in the general formulation body forces are also accounted for,

their presence is intentionally neglected in equation (2.1). The

existence of body forces will be considered in the Reissner formulation

in a much simpler manner identical to that of the assumed displacement

model.

In the Finite Element formulation the stresses _ are assumed over

the entire domain, and the displacements_ are interpolated from the

nodal values along the boundaries of the element only.

(2.3)

where:

P • Matrix of assumed polynomials.

_ Undetermined coefficients.

/
m Interpolation functions

!
w

Nodal displacements.

In Equation (2.1) the product of the traction vector T and the displace-

ment vector _ is integrated along the boundary of the element. On any



boundary the traction vector can be determined directly from the assumed

stresses _ ;

?A/ . 2,/7"(7" = 2/ (2.4)

where:

_ Matrix of direction cosines.

Substitution of equations (2.2), (2.3) and (2.4) into equation (2.1)

will discretize the functional _ :

Redefining the integrals of equation (2.5);

(2.5)

/Y= PSP dv

f ' , "! },,I ,7,1"'1'- " - - ,r

(2.6)

(2.7)

(2.8)

ORIGINAL PAGE IS
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2.2 The Hellinger-Reissner Principle

Assuming satisfaction of displacement boundary conditions, the

Hellinger-Reissner principle requires the stationary value of the

functional _ [3];

where i is now the matrix of prescribed body forces. Here the inte-

gration of the stresses is performed in the spatial domain and matrices

and _ are identical to those defined for equation (2.1). The
m

essential difference between the _E and _ approach is in the inter-

polation of displacements. Where in the_M6 approach displacements

are interpolated only along the boundaries (2.3), in the_ formula-

tion they are interpolated over the entire domain;

_ = A j_ (2.10)

and matrix_ is a differential operator which by operating on the dis-

placements gives the strain matrix;

Substitution of equations (2.2) and (2.11) into equation (2.9) will

discretize the functional _ ;

8



(2.12)

Redefining the last three integrals of equation (2.12)

A dv. ds

(2.13)

(2.14)

Hence equivalence of the two functionals (2.8) and (2.14) is apparent.

By virtue of their mathematical equivalence, body forces present in

the _4formulation can be accounted for in matrix Q, exactly analogous

to that of the_ formulation [5].

2.3 Solution of the Discretized Equations

In both the modified complementary Energy and the Hellinger-

Reissner formulation, the functional was seen to reduce to the form;

9



The functional has to assume a stationary value with respect to the

independent variable ;

=o

Substitution of equation (2.16) into (2.15) gives;

(2.16)

#7 ..-

Variation of _7_ with respect to/ gives;

T

(2.17)

Comparison of equation (2.17) with the familiar assumed displacement

results;

establishes the equivalent stiffness matrix obtained by the Assumed

Stress Hybrid method

i0



Matrix _ of the above equation, depending on the formulation used, is

defined by either equation (2.7) or equation (2.13).

2.4 Constraint Conditions on the Assumed Stresses

The assumed stresses as defined by equation (2.2) are not entirely

arbitrary and have to satisfy some minimum requirements.

i) The assumed stresses have to satisfy the homogeneous equa-

tions of equilibrium, that is the equations of equilibrium

for no applied forces. In most problems of continuum mech-

anics the satisfaction of the equilibrium conditions can be

achieved by extraction of the stresses from an assumed stress

function.

2) Another condition imposed on the assumed stresses is the

minimum number of betas required to avoid introduction of

spurious energy modes. If N is the number of degrees of

freedom present in the element, and M the number of

rigid body motions the element can undergo, then at least

N-M betas have to be used in the formulation of the stiffness

matrix.

2.5 Computation of the Stresses

Stresses can be calculated directly from equation (2.2);

ii



where_ is given by equation (2.16)

J

(2.19)

The matrix product H'_ will be computed during the element stiffness

computation (equation 2.18), and can be stored for the stress calcula-

tion, after the displacement solution I is obtained.

2.6 Implementation Considerations

It is evident from equation (2.6) that the size of the matrix His

directly related to the number of betas used in the assumed stress

matrix; for example, the size of matrix Hwill be n x n if n betas are

utilized. Since matrix _ has to be inverted (equation 2.18) for the

determination of the element stiffness matrix, it is desirable to keep

the number of betas to a minimum for computational efficiency. However,

when polynomials are used in the expression of the assumed stresses, a

complete polynomial is in general more desirable than an incomplete

expression randomly truncated for efficiency sake. This is due to the

fact that a complete polynomial will render an invariant element stiff-

ness matrix, while an incomplete polynomial will obviously affect the

element stiffness matrix based on its orientation relative to the

Global system of coordinates. This problem is of course alleviated

if a local system of coordinates is used for the stiffness computation,

12



although a transformation of the stiffness matrix from the local to the

global system of coordinates would then be necessary. In plane elas-

ticity problems it is possible to impose further restrictions on the

assumedstresses so that they also satisfy the compatibility conditions

throughout the element [7]. The constraints reduce the numberof betas

used in a set of complete polynomials and maintain element invariance

at the same time. This approach is also deemeddesirable since the

element will then satisfy both the condition of stress equilibrium and

compatibility, but is in general not easily applicable especially in

three dimensional solid elements.

The difference between_ and _ based hybrid element amounts

to the difference in the computation of the matrix _ (equation 2.7 and

2.13). Since equations (2.7) and (2.13) are in general integrated

numerically, it would appear that the model would be more efficient

since the integration is only performed around the boundaries of the

element. However, the comparison also requires an investigation of the

order of terms being integrated. In the _ formulation the matrix B

(equation 2.13) is obtained by differentiating the displacements

(equation 2.11) and therefore the product P_ is lower in order than

the product P_ for the samematrix P. The most efficient approach

will thus depend on the numberof degrees of freedom of the element and

the highest order of powers appearing in the assumed stresses. Another

consideration may arise from the construction of the matrix of direc-

tion cosines Y. In some general three dimensional elements with

13



boundaries of arbitrary geometry it may be very difficult to establish

_/ while this problem is nonexistent in the _7R formulation.

Finally, it should be noted that the only rigorous requirement on

the displacement interpolation matrix _ of equation (2.10) is that it

reduce to the proper interpolation of the displacements along the

boundaries of the element, and is otherwise arbitrary. This could

somewhatrelax the determination of the interpolation functions for an

element with uneven distribution of nodes.

14



CHAPTER3

Example Problem

To determine the performance of AssumedStress Hybrid finite ele-

ments a plate of finite width with a circular or elliptical hole is

analyzed. The plate is subjected to uniaxial tension and hence a con-

dition of stress concentration is developed at the hole, across from

the center of the hole directly perpendicular to the direction of the

applied load. Analytically obtained values of the stress concentra-

tion factor are known from the plane elasticity solutions with both

circular and elliptical holes [8].

Figure 1 shows the dimensions of the plate with a circular hole

subjected to tensile stress_ . A stress concentration factor of 4.32

exists at points A and B on the circular hole. Figure 2 shows the

dimensions of the plate with the elliptical hole subjected to the same

tensile stress _ . For this configuration a stress concentration factor

of 9.50 is present at points A and B shownon the ellipse. The length

of the plates compared to the dimensions of the holes were judged long

enough to simulate a uniform tensile pressure acting at infinity.

The two dimensional continuum nature of the problem selected for

analysis is important since the results will have a direct bearing on

similar analyses done with three dimensional continuum elements. The

solid three dimensional continuum element can in fact be regarded as

a natural extension of its two dimensional continuum counterpart.

15
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Due to the symmetric nature of the problem only a quarter of the

plates were used for analysis, namely the shaded regions of Figures 1

and 2. On the boundaries where the plates were artificially cut, zero

displacements were prescribed in directions perpendicular to each

respective boundary.

For the finite Element Analysis of the plates, the coarse mesh of

Figure 3, labelled Mesh-l, was first used. In Mesh-I the hole is

divided into two sections by a line from the center of either the circle

or the ellipse intersecting at 45 degrees. Stresses were computed at

locations A shown in Figures 3a and 3b, and were compared against the

expected results. It should be noted that Mesh-i incorporates a total

of three elements and in general is not expected to render accurate

results.

A finer mesh can be obtained by subdividing Mesh-l. This is

achieved by connecting the mid-boundaries of all the elements in

Mesh-l, which in effect replaces each element with four subelements.

This mesh is labelled Mesh-2 and is shown in Figure 4. Mesh-2 incor-

porates a total of twelve elements and should in principle yield a

better solution compared to Mesh-l.

The Finite Element Analysis Basic Library (FEABL) of the Aero-

elastic and Structures Research Laboratory of the Massachusetts Insti-

tute of Technology [9] was used for assemblage of the elements and

solution of the equations.

17
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CHAPTER 4

A 4-8 Variable Node Hybrid

Isoparametric Quadrilateral Element

4.1 objective

The displacement based eight node isoparametric element has proven

very effective in two dimensional continuum problems such as plane

stress or plane strain. The availability of the eight node plane

element in most of today's advanced Finite Element Library codes con-

firms its extensive acceptability. To this end it is therefore logical

that for analysis of the problems described in Chapter 3, with Finite

Element codes utilized by the industry, the eight node displacement

based element would be the effective option.

Development of an eight node hybrid isoparametric element will

provide a rational alternative for comparison against the eight node

displacement based element. The Hybrid Isoparametric Quadrilateral

element developed (called HISQUE) is formulated such that any number

of the mid-nodes can be removed. The number of stress terms (i.e.,

the number of betas) programmed in the element is also user defined

as an added flexibility for an optimum selection based on the number

of nodes employed. The element HISQUE can employ up to a complete

cubic set of assumed stresses in the XY plane.

2O



4.2 Formulation of Element HISQUE

4.2.1 The Assumed Stresses

Element HISQUE is formulated based on the Hellinger-Reissner

principle:

/-/= < p_'5p dv

G =g_v_ P#gdV

(2.6)

(2.13)

The matrix of assumed stresses is defined:

I'}(7" = O"vy

_y

and can be determined from the Airy stress function

(4.1)

_y2

Zy = _ _)2_

(4.2a)

(4.2b)

(4.2c)

As defined by equations (4.2), the stresses obtained will satisfy the

homogeneous equations of equilibrium in Cartesian coordinates:

_,_ ?y

21
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If an infinite series of polynomials in ascending powers of x and

y is used for the stress function _, where the individual terms of the

series are weighted by arbitrary constants_i:

; 2
(4.3)

then substitution of equation (4.3) into equations (4.2) will determine

the stress vector (4.1). The coefficients _ are then renamed:/such

that:; corresponds to the lowest coefficient _ appearing in the

series. Since the element HISQUE can have a maximum number of eight

nodes with two degrees of freedom at each node, and also since the

element can undergo three rigid body motions, it follows that a mini-

mum of 13 terms are required in the assumed stresses (Chapter 2). The

stresses obtained from the Airy stress function (4.3),

2j

+ 2_f/g. ÷ y3/g,s _ :

...

(4.4a)

22



+
/2

+ ,_y/3,8+ ,..

(4.4b)

-- / - 15 -

I X2/'3
-J I /8 -," "

st
(4.4C)

or in matrix form,

_yy =

G,_I

P

-l,
,!z1
/,_J

(4.4d)

From equations (4.4) it is shown that the highest power appearing in

the stresses depends on the number of betas retained. As seen in

equations (4.4), using eighteen betas will result in a complete cubic

expression of the stresses.

4.2.2 The Strain Matrix

The strain matrix _ of equation (2.13) is obtained by the dif-

ferentiation of the displacements

23



6 . _VV - o

(4.5)

The matrix _ of equation (4.5) is the matrix of the interpolation func-

tions. In the isoparametric transformation of the coordinates the fol-

lowing relations hold:

2( ..- Z Ai J/'/, (4.7a)

where:

h i _ Interpolation functions.

(xi,Y i) a Nodal coordinates.

or in matrix notation:

I'}i d

y

] I,

].
Y,, J

(4.7c)

24



Since in the isoparametric transformation the displacements are inter-

polated identically:

,,4.

&

where u0 and v. are nodal displacements of node i in x and y directions
1 1

respectively. It follows directly that matrix _of equation (4.7c) is

identical to matrix_ of equation (4.5).

For the eight node isoparametric element shown in Figure 5, the

interpolation functions h i are [I0]:

, I _8"_8
4

/73: _(,-t)(_-f) g ,z

/74 . _.¢( l + L ) ( l- f ) - ! _ 717t -.z_./ c_,9 ,_s

_5--i_(/_¢_)(z+f)
2.

Z..

,_7-__2(/- g 2)U- f );2.

}e . _8(z+ g)(_-'l')
where :

By employing the on/off switches _, any combination of the nodes

(4.8)

numbered 5, 6, 7 and 8 can be removed (Figure 5) while an appropriate

displacement interpolation is preserved.

25
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The interpolation functions h I are functions of _ and _ which in

turn means that the displacements as expressed by equation (4.5) are

also functions of _ andS. Derivatives of the displacements with

respect to the x, y coordinates can be determined as follows:

or,

Pj__,= 2_____,_ _ _, _y

where J is the two by two Jacobian matrix, the entries of which can

be easily obtained by differentiation of equations (4.7a) and 4.7b).

From equation (4.9) it follows:

where:

S
I

' t

The _ matrix can then be written as:

27



_/z, o _,_;_ o ... o
.- ,_

(4.11)

where [from equation (4.10)]:

a_, l a'/ _/. W

4.2.3 Numerical Integration and Implementation

The matrices//and _of equations (2.6) and (2.13) are determined

by the Gauss-Quadrature numerical integration scheme [ii]:

7" _/ _'('Xl)")d/_ - _//F("X,,y)_A
A

(4.11)

t _ Element thickness; assumed constant.

dA _ Differential area of the element.

Equation (4. ii) becomes:

÷1 ÷I

--/ _/

,J.J

., _ - ,c,, S ]. J "/ . i (4.12)

28



where:

;, ' ' ""
0

0 0

Using n points in the Gauss integration scheme of equation (4.12)

(i.e., M = N = n), a polynomial of order 2n - 1 can be integrated

exactly. The highest power of x or y that appears in equation (2.6)

will depend on the number of betas used in the stress terms. If the

complete cubic expression of equations (4.4) with eighteen betas is

used, the product P%P will contain polynomial terms of sixth order

and hence a 4x4 Gauss quadrature scheme would seem adequate. For an

accurate integration of the product P_ , the number of nodes need to

be considered. Equations (4.8) show that the interpolation functions

h.l are in general second order in_ and _ From equation (4.11) it

is seen that typical terms appearing in _are of the form:

where _ replaces either-_ or_ .

When all nodes are present, the matrix will contain fourth powers

of _and/or _. With a complete cubic distribution of the stresses it

is again seen that a four by four Gauss integration will be sufficient

to accurately integrate_. Naturally the required number of integra-

tion points will change if a lower order of stresses is used or the

mid-nodes of the element are completely eliminated.

Matrices ,_ and _ are hence determined as follows:

29

'_'_FPO0_., QUAUTY



ZZ[(
(4.13)

,,, ./
(4.14)

In equation (4.13), _ is the compliance matrix of an isotropic homo-

geneous material in plane stress:

O Z (/÷Y)

In equation (4.14), the determinant of the Jacobian matrix Jresulting

from the coordinate transformation is eliminated, because as seen in

equation (4.11) the matrix 8 has the reciprocal of this determinant

as a scalar multiplier.

The rationalization of the required number of integration points

was arrived at experimentally. It was observed that, for example,

using a 5 x 5 or 7 x 7 Gauss integration scheme, makes insignificant

changes to the stiffness matrix of the eight node element with com-

plete cubic stress distribution. This deduction is substantiated in

a report by Spilker [7] for an eight node hybrid isoparametric element.

It should be noted that for strictly two dimensional analysis, imposing

the condition of stress compatibility:

(4.15)

3O



will not only improve the efficiency of the element by reducing the num-

ber of betas, but will also produce a stiffness matrix that models the

physical problem more accurately [7]. However, in three dimensional

analysis the conditions of stress compatibility do not appear as simple

constraint conditions on the stresses and in general are very difficult

to meet. For this reason, performance of the eight node element with

the assumed stresses of equations (4.4) would be a better judge of the

solid isoparametric element.

The stiffness matrix of the element is then determined from equa-

tion (2.18) :

Since the inversion of matrix H can add considerable computation

time, the most efficient approach should be considered. Many efficient

routines are developed that factorize the matrix into triangular matrices

and then invert it by backward and forward substitution. For element

HISQUE, the subroutine DSINV, of the Scientific Subroutine Package (SSP)

programmed by IBM, was used to invert H. This subroutine operates in

double precision accuracy and requires storage for only the upper half

of the symmetric matrix H, for inverting it by the Cholesky Factoriza-

tion method.

The stiffness matrix was observed to have three zero eigenvalues

corresponding to the three rigid body motions and hence free of spurious

energy mode.
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4.3 Results and Discussion

4.3.1 Plate with Circular Hole

Stress solutions were obtained with a displacement based eight

node isoparametric element (ELEMS) [12] at the point of stress concentra-

tion with both Mesh-i and Mesh-2. Satisfactory stresses (+5%) were ob-

tained in both cases, compared to the expected solution of 4.32 at the

point of stress concentration. The results are shown in Figure 6, where

modeled with eight node elements Mesh-i incorporates 36 degrees of

freedom, and Mesh-2 106. The precedure was repeated with element HISQUE

and the results are also shown in Figure 6. The error in the stresses

is summarized in the table below:

TYPE L % error
Me sh-IMesh-2

ELEM8 -2.38 3.26
L

HISQUE -29.4 -. 81

An alternative to modeling the problem entirely with displacement

or hybrid elements is to use the hybrid element only where the stresses

are critical. This treatment of hybrid elements as specialized elements

is important from both solution efficiency and dependability aspects.

Since the hybrid approach does not differentiate the displacements for

the stress solution, it can be argued that where stress determination

is the paramount objective, its utilization will become advantageous.

A solution was obtained with Mesh-2, with element HISQUE used in

the shaded section of Figure 4a, and element ELEM8 in the remaining part

of the quarter plate. The percent error in the maximum stress for this
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case was -.9%. The difference in the error between this and the two

previous cases, where complete hybrid and complete displacement elements

were used, appears too academic.

Indeed, except for the appearance of monotonic convergence of the

hybrid stress solution versus the oscillating displacement based stress

solution, Figure 6, use of the hybrid element HISQUE does not seem

justified in the case of the circular hole. Nevertheless, with the finer

mesh, better than 2% improvement is observed in the stress solution when

element HISQUE is used. Closer examination of the stress equilibrium

at the left boundary of the quarter plate, Figure 7, reveals that the

resultant stress on this section is closer to the applied force when a

complete hybrid, or partially hybrid - partially displacement based model

is used. With Mesh-2 the following values were obtained for the

resultant stress N:

S

- o. qo/ .p. (" A z : _='-_.,w._ )

( _/i/xED , _,:'O_,.g.:

(4.16)

From Figure 7, it is also seen that, at the boundary, the stress

solutions of the complete hybrid and the mixed model are indistinguish-

able.
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4.3.2 Plate with Ell i_tical Hole

Stress solutions were obtained at the point of maximum stress of

the plate with elliptical hole shown in Figure 2. Modeled according to

Figures 2b and 4b, labeled Mesh-i and Mesh-2, respectively, elements

HISQUE and ELEM8 were both used in analysis.

Analysis with the displacement based element ELEM8 did not produce

acceptable results (_5%) with either mesh. As noted earlier, Mesh-i

is really too coarse to realistically model the problem within finite

element approximation, and its inclusion is merely intended to provide a

convergence trend. With Mesh-l, ELEM8 predicted a stress concentration

factor of 7.29_ , an underestimation with more that 23% error compared
0

to the expected value of 9.50 _ With Mesh-2, a stress concentration

of 8.57 _ was found which carries an error of -9.8%.

Analysis with element HISQUE converged with Mesh-2 and the results

are summarized in the following table:

Element

Type

ELEM8

HISQUE

% error

Mesh-I Mesh-2

-23.3 -9.78

-41.9 -4.52

The stresses obtained are shown in Figure 8.

As done in the case of the circular hole, this plate was also

analyzed with a combination of the two elements. Here, element HISQUE

was used in the shaded region of Figure 4b, and the rest of the plate

was modeled with displacement based elements ELEM8. A stress concentra-
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tion factor of 9.04 was obtained in this analysis, which only carries an

error of 4.84%.

It is seen that employment of the hybrid element provides consider-

able improvement over the strict displacement based element in the anal-

ysis of the elliptical hole problem. Considering that the next refine-

ment of the model would require 48 elements, the introduction of only

five hybrid elements around the hole and on the left boundary becomes

justifiable. So long as the cost of five hybrid elements equals that of

41 displacement based elements, the reduced burden of modeling the plate

with a fine mesh alone would rationalize the proposition. A more accu-

rate comparison should also include the resulting increase in the global

stiffness and band-width, and hence the additional storage and solution

cost. Although the ratio of required CPU (Central Processing Unit) time

for analysis with elements HISQUE and ELEM8 is well below 8:1, there is

much room in both for further improvements and a numerical comparison

would not be a creditable representative.

Figure 9 shows a plot of the stress distribution in Mesh-2, along

the left boundary, for all three cases. Again the indistinguishable

results between the complete hybrid model and the mixed hybrid displace-

ment model is emphasized. The reaction equilibrium can be determined

from the resultant stress N of equation (4.16):

M D - I01 }Do
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The fact that on the left edge, equilibri_ is a_ost exactly satis-

fied and the stress distribution is nearly continuous across the two

el_ents may erroneously suggest that the displacement solution of the

stress field has attained convergence.

A close ex_ination of the nodal stresses around the hole will

pr_ide an explanation of the more accurate hybrid analysis. The stress

nodal to the elliptical hole can be dete_ined by transforming stress

components along directions normal and tangent to the ellipse. The

angle of the nodal _, is given by:

_ = /BO°+ _n -I f_OI_I,5)I

Angle of point (x, y) on the ellipse, in polar coordinates.

Since the hole is not subjected to any external loads, a zero normal

stress condition is in effect prescribed at the hole. Figure 10a shows

a plot of the normal stresses obtained with the hybrid and the displace-

ment analysis. The results obtained with the mixed model are again in-

distinguishable from the complete hybrid analysis and hence are not shown.

_t is evident from Figure lOa that the hybrid element approximates the

stress boundary condition more accurately than the displacement element.
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In terms of the absolute value of the stress deviation from zero, the

displacement based results are at best 21%worse than the hybrid result,

and over 700%at _= 22.5° . Figure 10b shows the normal stresses to the

elliptical boundary normalized by the hoop stress.

4.4 Concluding Remarks

The ability of the hybrid element HISQUE to better satisfy stress

boundary conditions around a hole, compared to the displacement based

element ELEM8, is seen to produce better stress results in the cases of

circular and elliptical holes.

The most dependable, accurate and economical model in the finite

element analysis of these problems is judged to be one that employs

hybrid elements where accurate stress predictions are critical. The

mixed model employs displacement based elements for the rest of the

structure.
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CHAPTER 5

A-7-10 Variable Node Hybrid

Isoparametric Quadrilateral Element

5.1 Introduction and Objective

Comparison of results obtained with eight node isoparametric ele-

ments indicates that satisfaction of the free traction boundary condi-

tion is essential in successful stress concentration analysis around

holes. For this purpose, the formulation of a specialized hybrid iso-

parametric element, HEL710, based on the collocation method suggested

by Atluri [13], is presented. This approach led to introduction of two

additional nodes on one boundary of the element HISQUE. For preserva-

tion of compatibility in analysis with other elements the mid-nodes of

the other three edges of the element are removable. The optimum stress

distribution for this element was found to be a complete quartic.

The objective is improvement of solution accuracy and efficiency

compared to that obtained with a mixed model employing hybrid and dis-

placement based eight node isoparametric elements. Element HEL710 is

shown in Figure ii in the Cartesian global coordinates.

5.2 The Boundar_ Point Matchin@ Technique

As developed by Atluri and Rhee [13], the boundary point matching

technique works by introducing the Lagrange multiplier u in the varia-

tional formulation to enforce traction equilibrium. The Lagrange multi-

plier u is then the compatible interelement boundary displacement.
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(5.1)

_T_

.--

The hybrid stress functional.

Compatible interelement boundary displacements.

Portions of boundary where tractions are prescribed.

Prescribed tractions.

Comparison with equation (2.1) shows that the last integral is added to

satisfy the traction equilibrium. If the following assumptions are

made:

(2.2)

_ _ _ / (2.3)

= FD& (5.2)

Then one can write the traction vector in terms of the stresses:

(2.4)

In equation (5.2) _ are undetermined coefficients and, _ are arbitrary

order polynomials.
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Substitution of equations (2.2), (2.3), (2.4) and (5.2) into

equation (5.1) gives:

(5.3)

The functional _ should attain a stationary value with respect to the

two independent variables _ andS.

__0 (5.4a)

(5.4b)

where :

F Td5

and _ is determined by substituting coordinates of points on the boundary

in the P matrix. From equation (5.4a1:

(5.5)

Therefore, from equation (5.4b) :
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_'<---(s,,-__- _--_-_-ki,,_,____3-'_ (5.6)

Substituting (5.6) into (5.5):

.... (5.7)

By substitution of (5.6) and (5.7) into (5.3) and comparison with the

assumed displacement functional

_--_i U 7"2...!
I -- I

the element stiffness matrix _ is obtained:

(5.S)

However, if an element with n nodes is considered at m nodes of which

(n > m) zero traction is prescribed, then the general stiffness matrix

of this element
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(2.18)

can be rewritten as:

_A
H

-/

(5.9)

Where,8 is that portion of _ corresponding to the m nodes at which

tractions are prescribed to be zero. From equation (5.9) the stiffness

matrix ks seen to partition accordingly:

2_A
2=t

Here,8 _ is a matrix of order (m x m).

J
!

Since no loads are applied at

nodes B then:

_ I ! 'i i O_ ,

_j --<- :I i

Static condensation of the _ degrees of freedom gives:
7£
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where:

-; _" °/ 1 T _

(5.10)

The equivalence of equations (5.8) and (5.10) is seen when

T

In other words the method of boundary point matching is equivalent to

introducing additional nodes on a traction free edge and then statically

condensing these nodes in obtaining a reduced stiffness matrix.

Although very flexible, the boundary point matching technique has

inherent drawbacks. The major cost-related criticism directed at the

assumed strees hybrid formulation is the necessity of a matrix inversion

for stiffness matrix evaluation. As is seen from equation (5.8) the

boundary point matching requires a second matrix inversion, namely of the

matrix product (_ _/°_ _). Furthermore, the size of this matrix is
m m _w

directly related to the number of collocation points used to satisfy the

boundary traction condition; hence, the more accurate a solution desired,

the higher a price for the element.

To avoid costly inversions, element HEL710 employs only two addi-

tional nodes on one boundary (_=-I ), compared to the eight node ele-

ment HTSQUE. Since addition of two nodes per element used on the hole

surface does not increase the total global degrees of freedom significant-

ly, no static condensation is performed by element HEL710.

50



5.3 Formulation of Element HEL710

5.3.1 The Assumed Stresses

With all the nodes present, element HEL710 possesses 20 degrees

of freedom and therefore requires 17 betas in the assumed stresses to

exclude spurious zero energy modes. For completeness, the cubic assumed

stresses of element HISQUE, equations (4.4), with 18 betas were used.

Since element HEL710 incorporates five nodes on one edge, it takes ad-

vantage of a quartic displacement interpolation on this edge and hence

for a better balance a complete quartic stress distribution, employing

25 betas, was also tried. A complete quartic stress distribution is

obtained by addition of the following terms to equations (4.4):

3

: )/,,Jz# - S - /

5.3.2 Interpolation Functions and the Strain Matrix

The strain matrix is determined in a completely analogous manner

to that of element HISQUE, with the only difference existing in the

interpolation functions. The interpolation functions h. were constructed
l

such that the displacement distributions on any boundary of the element

were compatible with the number of nodes present on that boundary.

Another requirement satisfied by the interpolation functions is:
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The following interpolation functions were obtained for the isopara-

metric element:

3 ~

& _¢ ?_< L> '&' < . ,

3 /4 . -Z

,_,.___(?+,>_.?.,_>¢-l>c<,,-?c_-,>

k, ' < (" j<i,_)/1

( /.<
where : _ _ = -

/

#

¢ ' _r_3_,¢.'.,-I- ¢?,;"/_,i .(
/
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It is seen that by employing the_function, any
combination of nodes

numbered 8, 9 and i0, Figure Ii, can be removed without disintegration

of interelement compatibility. This characteristic will allow element

HEL710 to be used in analysis with four and/or eight node elements.

5.3.3 Implementation

A 5 x 5 Gauss numerical integration was found to be the minimum

order for an adequate integration of matrices H and 6. Very insignif-

icant changes of the stiffness matrix resulted when higher order inte-

gration was used. Otherwise, the implementation of element HEL710 is

identical to that of element HISQUE, presented in Chapter 4.

5.4 Results and Discussion

5.4.1 Plate with Circular Hole

The plate was modeled entirely with displacement based eight node

elements ELF,8, except around the hole where elements HEL710 were used.

Two sets of stress solutions were obtained. The first set of results

acquired using complete cubic assumed stresses was completely unaccept-

able. Stress concentrations of 1.80_o and 3.43_ were obtained at the

point of maximum stress, with Mesh-i and Mesh-2, respectively. With a

complete quartic stress distribution the stress solutions were somewhat

improved, and stress concentrations of 3.03.po and 4.21 _ were computed.

The percent error in the stress solutions are sun_m_arized below:
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Element % error

Stress iMesh-I

-58.3 -20.6Cubic

Quartic -29.9 -2.55

Although not as accurate as element HISQUE, with Mesh-2 and a com-

plete quartic stress distribution the computed stress concentration fac-

tor converged within the +5% acceptable margin. The convergence of the

stress solution is shown in Figure 12 for both cases. It is clear that

element HISQUE with cubic assumed stresses is not effective in analysis

and was therefore not used for the elliptical hole.

5.4.2 Plate with Elliptical Hole

Again element HEL710 was used around the hole while the rest of

the plate was modeled with ELEM8. Stress concentrations of 4.76_, and

8.47_ were computed at the point of maximum stress with Mesh-i and

Mesh-2, respectively. The analysis did not converge to the correct

solution of 9.50_ and proved element HEL710 unsuccessful, in all

respects. Firstly, element HEL710 employs 25 betas resulting in a matrix

of order (25 x 25). Inversion of this matrix makes element HEL710

almost twice as expensive as element HISQUE. Secondly, element HEL710

employs four degrees of freedom more than element HISQUE, resulting in

a larger global stiffness matrix and hence additional computational

cost.

5.5 Concluding Remarks

The normal stresses around the boundary of the elliptical hole, as
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determined by element HEL710 with Mesh-2, are plotted in Figure 13,

against the polar coordinate location of the hole 8. As angle 8 in-

creases, the ellipse exhibits more pronounced curvature variations;

subsequently element HEL710 is unable to contain the magnitude of the

normal stress close to zero. Elements inaccuracy is also partially due

to the unbalanced nature of this element. Introduction of additional

nodes will increase the cost of the element and further deteriorate

any possible ability to compete against element HISQUE on economical

grounds.

Development of a more balanced element (i.e., comparable number of

nodes on boundaries) which identically satisfies the traction free con-

dition at the hole is judged most effective for analysis.
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CHAPTER 6

A Four-Node Element With a Circular Traction Free Edge

6.1 Introduction and Objective

Instead of pointwise satisfaction of the free traction condition

at the hole, via boundary point matching or other similar techniques,

it is possible to formulate an element which will exactly satisfy this

stress boundary condition at a circular hole. To this end a four-node

element which incorporates a built-in traction free circular edge is

formulated in polar coordinates. Although restricted to analysis of

circular holes, the four-node polar element, named PET4, will serve as

a model element for comparative evaluation.

Element PET4 is formulated with two different sets of assumed

stresses. The first set of stresses satisfies the equilibrium conditions

while the second set satisfies the stress compatibility conditions in

addition to equilibrium. The objective is again for the improvement of

solution accuracy, and efficiency, compared to other efficient alterna-

tives, namely the mixed model approach of Chapter 4.

6.2 Formulation of Element PET4

The formulation of element PET4 is based on the modified complemen-

tary energy functional _. In the _T_C formulation the matrix _is

determined by integrating the product of boundary tractions and inter-

element displacements, around the element boundary (equation 2.7). Since

element PET4 has prescribed zero tractions on the circular edge, evalua-
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tion of matrix _ is needed on the remaining three edges only.

14 shows the nodes of element PET4.

Figure

6.2.1 The Assumed Stresses

If the origin of the system of coordinates is located at the

center of the circular hole, then the condition of zero traction at the

hole reduces to simple constraints imposed on the stresses in polar

coordinates:

where:

: _ (6.1)

rza

Radius of the circular hole.

A set of assumed stresses that identically satisfy the equations of

equilibrium can be obtained from the Airy stress function_[14].

_rr r _r r _ _e _-

_r z

gr r .?r

Assuming the Airy stress function to be of the form

(6.2)

(6.3)
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then substitution of equation (6.3) into equations (6.2) yields:

t
(6.4)

.- . (
Z t_ w

Expanding equations (6.4) with both terms &W_@ and _,5_ will provide

a set of stresses weighted with respect to the coefficients A_n. Im-

posing the zero traction condition of equation (6.1) will reduce the

number of constant coefficients and hence will in general provide an

infinite series of polynomials in r and transcendental circular func-

tions of _ . An expansion of the terms with:

__ O, I, I., _, 4_ 5

resulted in a twelve-term set of stresses. After rearranging the terms

in increasing powers of r and redefining the coefficients J_n as/i{i ,

the following result is obtained:

i /

/ r z f

/-;- / 12
i

61



(6.5)

or in matrix form:

CT_e

(Trb
/

(6.6)

Equations (6.5) show that retaining all 12 betas in the assumed

stresses will result in a cubic distribution, while truncating the

series after_ will render a quadratic distribution of the stresses.

/

The full set of stresses of equations (6.5), with twelve betas, was

used in element PET4/12, and the truncated series with nine betas was

used in element PET4/9. Equation (2.6) will then determine matrix U
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6.2.2 Displacement Interpolations

The displacement interpolations are required along the boundary

for evaluation of the _ matrix. Along the edges connecting nodes 1-2,

2-3, and 3-4 (Figure 14), a linear interpolation between the nodal dis-

placements will ensure interelement compatibility.

Along any straight edge i connecting nodes i and i + 1 (Figure 15):

It should be noted that displacements are interpolated in the Cartesian

coordinates to finally render the stiffness matrix in the Cartesian

rather than polar system of coordinates. Therefore it follows that at

edge i:

where: _ (_--

Equation (6.8) applies to displacements _X and _/it/ both.

is defined:

If the matrix
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/
_Z

(6.9)

Then from equations (6.7), (6.8) and (6.9) it follows for side i:

-z (/__)/'6_i-_ - ._

:-<i+_>/l_li.l j

(6.lO)

J

Again, no interpolation along the circular edge (4-1) is needed since

no integration is required at this edge.

The_matrix is then determined from:

"Iv P_'Y L d5
(2.7)

since _ is the matrix of displacement interpolations in Cartesian

coordinates, a transformation of the stresses from their original polar

coordinates is necessary:

m
,A

(6.11)

65



(6.11)

hence:

P-TP
(6.12)

Where _ is the familiar transformation matrix due to rotation of the

axes:

T .- [/7 z m z %ranm/l - mr/ /J7 _ n _

(6.13)

r/ = 5/a e

In equation (2.7), y is defined as the matrix of direction cosines of

Figure 15:

t

'N

(6.14)
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which when multiplied by the stresses produce the traction vector.

From (2.7):

G .

From (6.12) :

j_;v P" _ L.
6- T;.'

L "7"."

_= PY_d5

J5

(6.15)

From equations (6.13) and (6.14) it follows:

F .- [

w

Y - ..... ×y

- z_, V.,+ x×<,,,;.,,_

(6.16)

As defined by equation (6.16), the matrix y will transform stresses in

polar coordinates to tractions in Cartesian coordinates, at any point

9 on a boundary. Thus all the matrices of equation (6.15) are defined

for integration.
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6.2.3 Implementatio n and Numerical Integration

For a Gauss-quadrature numerical integration of equation (2.6) a

coordinate transformation is necessary:

._,t ,_,/

(6. 17)

where: F('/'/ ;] _ P_ P

For the transformation of equation (6.17) the polar coordinates are to

be expressed in the _ ,_ system:

(6.18)

(6.19)

From Figure 14 it is seen that if sides connected by nodes 1-2 and 3-4

are radia_ and hence functions of r only, then function f of equation

(6.18) constitutes a linear interpolation of angles labeled _and_$

in Figure 14.

- .. - + ..,
• _ % ,..,.v /

(6.2o)

Where _ is the non-dimensional coordinate of equation (6 17) defined to
:_

assume values of +i and -i at the boundaries 1-2 and 3-4, of Figure 14,
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respectively. This assumption forces element PET4 to possess two

radial edges, but its adoption results in considerable simplifications

and is hence preferable.

With _ interpolation fixed, interpolation in the r direction is

straightforward. Defining the non-dimensional coordinate _ to be -i at

the circular edge 4-1 and +I at the straight edge 2-3, then:

F: _ _ 7 : " 4 (6.21a)

is the equation of line 2-3 in polar coordinates. In equation (6.22),

xi' Yi are the Cartesian coordinates of node i. The interpolation in

the r direction is then simply:

It is seen that equation (6.23) reduces to the conditions of equations

(6.21).

With functions f and g of equations (6.18) and (6.19) defined the

Jacobian of the transformation is given:
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J

m

_r 9r

From equation (6.20), it is clear that 8 is independent of _ and there-

fore the determinant of the Jacobian matrix simplifies:

,'_)- +,4 j ",''
J

(6.24)

For a numerical integration of the matrix H as shown in equation (6.17),

Gauss integration stations _ _ and .are picked and their corresponding

/" and 9 coordinates are determined from equations (6.20) and (6.23).

This in turn enables the evaluation of the stress matrix Pat any inte-

gration point. Equation (6.17) then reduces to the familiar form:

,+': : !Z
.-- ,;. / "" ...

(6.25)

where:

W i _ Gauss integration weights.

For the numerical integration of equation (6.15), the linear interpola-

tion of equation (6.8) is used:
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.) : _ (x.+, - x_) + LKY'<.-,.,;<_i..°.

- ? - -_ ('/_,,+S:<:

i,

where: _ _ U_USS //'Z"_'_.W/"_'_/'_ _._;'_'!

4 _

therefore: - _)d" ' ,I

I

LT  -7-J.- J

Direction cosines of equation (6.16) are also defined for edge

(i, i + I)

"' gA _lz+/ _ '
' _ • I'

f w�Y7 : S,, _,, ( X.., - Y: " :, /

< -./; - /;+: j'.

Equation (6.15) can then be broken into three separate integrals along

the three straight edges of the element

(6.26)
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where :

i
(6.27)

From equation (6.15):

! p 'i,i7

And from equation (6.8) :

L

Equation (2.18), along with (6.25), (6.26) and (6.27) determine the

stiffness matrix _ .

In most cases a 5 point Gauss integration was found sufficient for

accurate integration of matrices_ and _ . For the complete stress

distribution of equation (6.5) with 12 betas, 7 points were required to

integrate the _ matrix.

6.2.4 Element PET4X5

As previously discussed in Chapter 4, in two dimensional plane

analysis, the assumed stresses can be chosen such that the condition

of compatibility is also satisfied:

j = 0 (4.15)
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If the Airy stress function is assumedto be [14] [15]:

//c'_j OJ) I •
, .)

q

(6.28)

then substitution of _(0) in equation (6.2) and (6.1) gives:

o.<o> / l _do Z,,,-- Z,,,

_2' : .6, (z,.;+i:_' ..+._o(_,_z,,-.._,,,_,)

= 0

(6.29)

it follows:Similarly by substitution of _(n)

_/") I (n_ I) C,, a _ _'Z .._,,,Z n-:-_. _ r .- (/-,?)d,,, a r

1,'I,,2..n. Z 2) 9.. -n. g-(l+n) Cn a r . (i_n dn d r

, !

J

,i

! "+ (1- _ ) dn U -~n,_~ r-,_, (I-n e)_,_:z-rn'" " _r
h

+ (i,_n/Cn _z/'n/z _Z_n• _ + (t_n _-)d,z_ r -n-z

, (_,_n+nz,,4_.r
F!

. /I-;f_rl-16<ilr -_i)

17

(6.30)
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In condensed matrix notation:

(6.30)

If the logarithmic terms appearing in _(0) are dropped; for n = I, 2

the following results are obtained:

t '
+_,,-s..',,c..._/ b i

_, : (j+ , +_a,-_._ j #,.../,,. -?" i;

"_Jx._,._/< ".,,<.., ,"-','/.'.., "t
, i-_ i j

., d

(

(6.31)

where the coefficients C and D
n n

replaced with , s.

/

of equations (6.29) and (6.30) are
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Using the assumed stresses of equation (6.31), element PET4 will satisfy

conditions of stress equilibrium, compatibility and free traction at the

boundary, in addition to interelement compatibility. As shown in equa-

tion (6.31) only 5 betas are present in the assumed stresses and there-

fore the size of the matrix_ is kept to a minimum. The element using

the set of stresses of equation (6.31) is named PET4X5 and with the

exception of the assumed stresses, its formulation is identical to

elements PET4/9 and PET4/12 discussed earlier.

6.3 Results and Discussion

On the finite element model of the plate with circular hole ele-

ments PET4 were used at the hole boundary. Since elements PET4 possess

two nodes at each edge, a compatible four-node displacement based iso-

parametric element [12], called ELEM4, was used to model the plate

away from the hole.

The plate was analyzed with elements PET4/9 and PET4/12 to deter-

mine the optimum set of assumed stresses between the two. Element

PET4/12 was found superior in performance although a converged stress

solution was not obtained with Mesh-2 in either case. Figure 16 shows

a plot of the stresses obtained with the two elements. The percent

error of the stresses are summarized in the following table:

i

Element I _ error 1
i

Type Mesh-i IMesh-2 _
i i

1 T4/9 -30.7i -12.2 

PET /12i-36.O -8.31:
J
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Although the results may at first appear unsatisfactory, a closer

comparison of Figure 16 and Figure 6 will indicate that analysis with

elements PET4 utilizes less than half of the number of degrees of free-

dom of an equivalent model using eight node elements. Element PET4/12

is in addition much more economical than element HISQUE, when employing

8 nodes and 18 betas. Combined with the four-node displacement based

elements ELEM4, a reduction of more than 50% in the total solution time

(CPU) resulted in comparison with the eight node analysis of the same

mesh.

Element PET4X5 is yet more economical than element PET4/12 in that

it only uses 5 betas. With Mesh-l, employing a total of 16 degrees of

freedom, PET4X5 produced a stress concentration of 4.52_ , already

within the acceptable margin of +5%. With Mesh-2 a stress concentration
I

of 4.13_ (error = -4.4%) was predicted. These results are also plotted

in Figure 16. The in plane stress _ along the y axis, obtained with

PET4X5, is plotted in Figure 17 for Mesh-i and Mesh-2. Element PET4X5

is judged so far the most efficient and effective finite element in

analysis of stress concentration around circular holes.

6.4 Concludin@ Remarks

Satisfactory stress solutions of element PET4X5 suggest that in

addition to assuring the traction free boundary condition at the hole,

satisfaction of stress compatibility conditions will further improve

the performance of the element. In the case of element PET4/12, where

compatibility conditions are not met, the stress solution contained
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8.3% error when modeled with Mesh-2. In view of the considerable cost

reductions achieved with element PET4/12, in addition to the fact that

few degrees of freedom (42) were used in analysis, this element presents

desirable advantages compared to the eight node hybrid isoparametric

element HISQUE. The apparent failure of element PET4/12 is nevertheless

more due to the ineffectiveness of the four-node elements in connects

than its own capabilities.
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CHAPTER7

Conclusion

7.1 An Eclectic Approach

Use of hybrid isoparametric finite elements was found more desir-

able than their displacement based counterparts in stress concentration

analysis around holes. Although these elements do not strictly satisfy

the required traction free boundary condition, they consistently approx-

imated this condition more accurately than the conventional displacement

element.

Adoption of the boundary point matching technique was seen to reduce

element cost effectiveness without a justifiable proportional increase

in element accuracy. However, improvement in solution accuracy and

efficiency was achieved when the free traction condition at the hole

was exactly satisfied by adoption of an appropriate set of assumed

stresses. Here, hybrid formulation provides the only effective means

of satisfying stress boundary conditions.

Further improvements resulted when in addition to satisfaction of

boundary traction, stress compatibility conditions were also satisfied.

This deduction is a natural consequence of satisfying stress equilibrium,

compatibility, boundary traction and interelement displacement continuity

in such finite elements.

In three dimensional elements, satisfaction of stress compatibility

may prove too difficult although other requirements met in two dimen-
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sional analysis can be assured. A general formulation of two dimension-

al hybrid isoparametric elements that incorporate any numberof traction

free boundaries is provided in Appendix A. This formulation can be ex-

tended to solid elements and its generality affords satisfaction of

free traction condition on boundaries of arbitrary geometry.

Finally, employment of such specialized hybrid elements leads to

an eclectic modeling of the physical problem which in general yields

more efficient and accurate solutions. This implies use of specialized

elements where stress boundary conditions are prescribed, hybrid elements

in regions of high stress gradients, and displacement elements other-

wise. Indeed in problems of stress concentration, fracture mechanics,

or wave propagation use of hybrid elements will provide noticeable im-

provements.

7.2 Recommended Research

The twelve node solid element of Figure 18, as well as the two

dimensional six node elements it incorporates on each, side can be for-

mulated by the approach of Appendix A. Performance of the six node

element should be compared with elements HISQUE and PET4 of Chapters 4

and 6. In this element node 5 is introduced on the mid-boundary to

provide a traction free edge of flexible geometry, while node 6 is to

allow connection with eight node elements for added effectiveness.

Satisfactory results with the two dimensional element should justify

its extension to a study of the twelve-node solid element.
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APPENDIX A

Satisfaction of Free Traction Boundary Condition in

Assumed Stress Hybrid Isoparametric Finite Elements

A.I Introduction and Objective

In finite element analysis of stress concentrations induced by the

presnece of holes in a structure, satisfaction of the free traction

boundary condition at the hole becomes a prerequisite for effective

stress computation. Since isoparametric finite elements conveniently

conform to shapes of arbitrary geometry, formulation of a two dimension-

al hybrid isoparametric element that identically satisfies the condition

of free traction at the boundary is developed. The general characteris-

tic of this formulation makes it applicable to three dimensional solid

elements as well.

A.2 Curvilinear Coordinates of Isoparametric Transformation

In isoparametric transformation, Cartesian coordinates X and Y

are interpolated by a set of shape function h. :
1

(A-l)

"-7

y. x ..;'. _,',_I,,(, (A-2)
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where:

(Xi' Y'I ) _m Coordinate of node i.

M i Number of nodes.

Equations (A-l) and (A-2) can be rewritten in summation form:

In equations (A-l) through (A-4), h. are functions of the isoparametric
1

coordinates _/and 1_ Z . From these equations the covariant base vectors

of the isoparametric system are found [16]:

(A-5)

(A-6)

from which the covariant metric tensor results:

(A-7)
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/

</ : s<.:'(6,/)

The normal vector to the plane of the element, _p

from:

(A-8)

(A-9)

(A-10)

can be determined

The contravariant base vectors of a general isoparametric planar ele-

ment follow:

/_ !c_+:'- _ _-_:__,_ _)_,_<,<::,,) J

i_, -(JJ,:,_,

(A-II)

(A-12)

The Christoffel symbols of the transformation are defined:
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Defining:

_' . __' t j,_ _,,, _ z;_y,,z t

_ t_ _-_'_ t

(A-13)

(A-14)

(A-15)

A.3 The Boundary Normal and Traction Constraints

Consider the eight node isoparametric element shown in Figure A-l,

with vector T designated as tangent to boundary _t= -I . This boundary

constitutes a parabola, the equation of which is determined by element

shape functions h 2, h 3, and h 6.
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where: H; - _;

The tangent vector T follows directly from (A-19) :

(A-20)

If the tangent vector is defined:

: CA *-,+ 8 *-,)

then the normal vector to this boundary is:

It should be noted that T, and,_"are not unit vectors, but can be nor-

malized if needed. From equations (A-20) and (A-21) the normal vector

results:
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..%

(A-22)

Equation (A-22) is then compared with the first contravariant base

_I given by equation (A-II). At the boundary _ /bector
O

1 =-I

(A-23)

Noting that the shape functions h
g

equation (A-23) reduces to:

' I t _ _

are defined to vanish at nodes i _ g,

(A-24)

The vectors i_ and defined by equations (A-22) and (A-24) are seen

to be parallel since:

' I
I

Therefore the normal vector at the boundary _ = -J is parallel to the

o, |

first contravariant base vector _ As a result of this conclusion it

can be shown that if the assumed stresses used in the hybrid formulation
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are the contravariant tensor stresses of the isoparametric system, the

condition of free boundary traction reduces to simple conditions of con-

straint on the stresses. Similar conclusion can be drawn by considering

the boundary E l= ,7

Along the boundary,/= constant, components of the traction vector {

are expressed in terms of the contravariant stress tensor:

"' .-
J (A-25)

-- _ /71 + /. f]_ (A-26)

_, -- r/i #- _2. (A-27)

,m

Where _;'" is the contravariant stress tensor, and n. are the components
l

A
of the unit vector N, normal to the boundary:

4

(A-28)

The normal vector N was shown to be parallel to the contravariant base

vector D and therefore:

__ = ) (A-29)
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Comparison of equations (A-28) and (A-29) gives:

¢

/?Z = 0

which reduces equations (A-26) and (A-27) :

(A-30)

= -- /7/ (A-31)

The traction vector is resolved into contravariant components along the

covariant base vectors:

(A-32)

substituting from equations (A-30) and (A-31) :

; (_ I a,_5.e,,_,') (A-33)

For zero traction at the boundary _I= constant:

[ _,I= _,Jz= 0 ] , (A-34)

Similarly for a prescribed pressure m at this boundary;
_o
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(A-35)

which is seen to reduce to equations (A-34) in the special case of no

applied pressure.

Similar conditions are obtained at boundaries _ _= constant. As

shown in Figure A-2, the first covariant base vector _" is always
t2 l

tangent to this boundary. From equation (A-12) it follows that the

contravariant base vector Z is normal to llne "_ constant. The unit

normal is hence obtained:

A

z!
Comparison with equation (A-28) shows that along lines E -- constant:

_/ m 0 (A-37)

Substituting (A-37) into (A-26), and (A-27) will in turn simplify equa-

tion (A-32) :

,-,- g,zr. Z ,_ = z / z i

at boundary _ = constant:
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(A-38)

A.4 Implementation

The following formulation illustrates how the aforementioned re-

sults can be applied to a two dimensional isoparametric element incor-

zt
porating a traction free boundary at _ = -_ .

A.4.1 The Assumed Stresses

The two dimensional contravariant stress tensor can be obtained

from the Airy stress function:

where e _/
is the two dimensional permutation tensor:

I/ El
E _- £ =0

E
/Z

- _E I/ _ /

and _ is defined by equation (A-10).

Stresses obtained from euqation (4-39) will necessarily satisfy

the homogeneous equations of stress equilibrium:

#

' /.
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From equation (A-39) it follows:

_._: / _-Z•

-_,r'_ , i _._'_ _.,.:. ,, ,_ _ Z_

(._'_--1.- -- ' - --' J

For simplicity the Christoffel symbols are redefined:

(a-40)

(A-41)

(A-42)

_L,,_ -

m.l

c LL,,_1 _-,;

/,

//

With .__and r' replacing _ and _ -respectively. Substituting into

equations (A-40), (A-42), and (A-41) gives:
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_.11... ..-.I _ ./,

)

' ' " _ I , ,_,
,_. ,,._ . ,.' , /. #,

i I_ _,.< ,/) _
// L _.' . .

t

where "_;t and F_7"#_ are partial derivatives of _ with respect to _ and ¢ #

respectively.

Assuming the Airy stress function:

Zf.
i'z# /I

the contravariant stress components become:

!

_ (,_÷,) A,_,., C_'t,7)

J

(A-44)
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,,In

- (,_tl),4_?,,,__ di,/)
,I

(A-45)

To prescribe zero tractions at boundary _ = . J of the element:

[ ° ° ] (A-34)

Substituting equations (A-43), and (A-44) into equation (A-34) introduces

constraints among coefficients A .
mn

coefficients A gives:
mn

Rearranging the indices to unify the

122-_o/2.:o

I -,_l !
__L"_ _-'f(l,_)I_-_

I./ Iv

,'22=017-.'o ,. ; J

(A-35)

(A-36)

(A-37)

where the functions A, B, _, and 5 are defined:
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/I_'11 tl_ 17"and therefore vanish at _=-I . As a consequence and of equations

(A-35) and (A-37) are also identically zero at this boundary. Equations

(A-35) through (A-37) can be expanded in as many terms as required.

Redefining coefficients A as_i, the stresses are expressable in
mn /

matrix form:

: ?<l,fj/L (A-38a)

An advantage of this approach is immediately obvious from equation

(A-38a). Since the assumed stresses are chosen in the isoparametric

system, the resulting stiffness matrix is invariant and hence unaffected

by element rotation relative to the Cartesian coordinates. This elim-

inates the need for a complete polynomial of stresses and allows selec-

tive adoption of effective terms.

For implementation on the high speed computer equations (A-38) can

be rewritten in a much simpler form:

m __ /-,
(A-38b)

which compared with equation (A-38a) gives:

, _ (A-38c)
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Here T;is the matrix of Christoffel symbols, the entires of which were

previously defined :

r , i_- _ / .£ .F
-- b

Matr_ _ of equation (A-38c) is s_ply obtained by expansion of the

following series :

M

7:ZZ

(A-38d)

(A-38e)

Thus equations (A-38c), (A-38d), and (A-38e) completely define a set of

self equilibrating assumed stresses.

In computation of matrix # :

H= /O SPdv

_. _ .. _ _ (A-39)

Gauss integration coordinates become the natural variables and the neces-

sity for evaluation of a Jacobian matrix of transformation is eliminated.

The assumed stresses of equation (A-38c) can be easily evaluated at

Gaussian integration stations and equation (A-39) becomes:
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The compliance matrix S of equations (A-39) and (A-40) relates the co-

variant strain tensor to the contravariant stress tensor:

(A-41)

For isotropic materials S is defined [17]:

5,_nff- Lt.+Y/4" y

,E,
Z _--Po;_o,'-_ 4_<_4,D.

In matrix form equation (A-41) becomes:

where:

f_. t 5,,,,i
_z:. = 5zz.

,J/z 5,,z,,,,

5 ;,uz ,zS_/z f _

5,z_ 15 /_/; f/z

5... = i _,,

i z _'-

/

(A-42)

(A-43)
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A.4.2 The Strain Matrix

Interpolation of the strain matrix i_ is required for computation

of matrix _. In the Reissner formulation:

(A-44)

To obtain the final stiffness matrix in the Cartesian system of coor-

dinates, displacements are interpolated in Cartesian coordinates and

hence transformation of the stresses to the same system becomes neces-

sary:

where:

(7" _/4 .-" :_-,L_;_n s/,_s,_ ( X , Y)

In matrix form, equation (A-45) becomes:

(7-Yf =

_-xy _r31 _1 _3 f.-_zi
(A-46)
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where:

Derivatives of the Cartesian coordinates with respect to _ and

are determined from the interpolations:

(A-l)

(A-2)

In isoparametric elements the displacements are interpolated identically:

(A-47)

(A-48)
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From equations (A-47) and (A-48) the strains can be determined:

6zz = --

These equations in turn determine the matrix 8 in terms of the nodal

displacements :

With equations (A-46) and (A-49), matrix _ of equation (A-44) becomes:

(A-50)

where 7" is the matrix of transformation, and P is defined by equation

(A-38c). Matrix _ of equation (A-50) can also be integrated by the

Gauss quadrature scheme of equation (A-40).

A.5 Extension to Solid Elements

Similar results can be derived for solid isoparametric elements,

Figure A-3. The three dimensional components of a traction vector

expressed in terms of the contravariant stresses are:
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Figure A-3 Normal To Boundary Of A Solid Iso-

parametric Element
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where:

A

At the boundary _ /_ --/ of Figure A-3, the contravariant base vector

a is along the direction of the normal to this boundary,_:

o

A N' -'0

_/ . /__/ = rl, _ ; J72.- n3- 0

(A-52)

Substitution of equation (A-52) into equations (A-51) gives

Therefore if the assumed contravariant stresses of a hybrid solid element

are chosen such that:

the condition of free traction will be automatically satisfied at bound-

I

ary _ =-_ of this element.
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APPENDIX B

Computer Programs

Ehe computer programs are all in form of subroutines. This

enables use of the programs in Finite Element codes by way of

linking a main program to the desired element stiffness matrix

subroutine. Each program is follcwed by a_Dther subroutine for

computation of the stresses.

All subroutines were progranm_d and executed on the Digital

VAX-II/780 computer. All programs are written in FORTRAN-IV.

B.I _ HISQUE

The following variables are required by subroutine HISQUE:

E =Young' s modulus

NU =Poisson' s ratio

T =Element thickness

X --Vector of nodal coordinates, x

Y --Vector of nodal coordinates, y

Ix =0(i) if node x is absent(present)

NBETA =Number of betas

IO =Output control variable

_he following variables are returned by subroutine HISQUE:

HINVG =Product of matrices [H]inv. and [G]

RFAI_ =Element stiffness matrix
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Subroutine QUESTcomputes the stress vector STRESSfrcra the

following variables:

XS,YS

Hinvg

DISP

=Coordinates of point at which stress is desired

--Matrix returned by subroutine HISQUE

--Vector of nodal displacements
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SUBROUTINE HISQUE( E,NU,T, X,Y, I5, I6, I7, I8, NBETA, IO,HINVG, R_%I/_)

IMPLICIT RE%L*8 (A-H,O-Z )

DOUBLE VRECISION NU,JII,JI2,J21,J22

RE_L HINVG(NBETA, I), REALK(2* (4+I5+I6+I7+I8) ,i)

CHARACr ER*5 ASTRNG

CHARACTER*I 3 BSTRNG

DIMENSION X(1),Y(1),C_(4,4),GW(4,4)

DIMENSION DLM (3),F(8) ,DZ (8) ,DE(8)

DIMENSION S (3,3) ,P(3,18) ,H(18,18)

DIM_qSION BE(3, 16) ,G(18, 16)

DIMENSION HG(18,16) ,STMTX(16,16)

DDX(M)=+J22*DZ(M)-J12*DE(M)

DDY(M)=-J21*DZ(M)_JII*DE(M)

DATA C_/
1

2

2

3

3

4

4

0.00DO,

•000000000000000110,

-.577350269189626D0,

.000000000000000DO,

-. 774596669241483D0,

•7745966692 41483130,

0.00D0,

.O00000000000000D0,

•577350269189626D0,

•00000000000000(D0,

.000000000000000D0,

.000000000000000D0,
-. 861136311594053D0, -. 339981043584856190,
•3399810435848S6D0, .861136311594053130/

DATA GW/

1

2

2

3
3

4
4

2.OODO,

.O00000000000000D0,

i.O00000000000000DO,

•000000000000000DO,
•555555555555556D0,

•555555555555556D0,

•347854845137454D0,

•652145154862546D0,

0.00D0,
.000000000000000DO,

i.000000000000000D0,

.000000000000000D0,

•888888888888889D0,

•00000000000000 0DO,

.652145154862546D0,

•347 85484513745 4D0/

NNDDES=4+I 5+I 6+I 7+I8

NDOF =2*NSDDES

C5 = I5

C6 = I6

C7 = 17

C8 = I8
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IF (NNDDES .GT. 4)

IF(NBETA.GT .12)

NIN?=-3

NINT=-4

NINT=4

IF (NNDDES .LT. 4.0R.NNODES.GT. 8)GO TO i000

IF((NDOF-3) .GT.NBETA) GO TO 2000

IF(hBETA.GT.18) GO TO 3000

DO lO0 IR=I,18

DO 50 ICH=I, 18

50 H (IR, ICH)=O. DO0

DO 75 ICG=I,16

75 G(IR, IOG)=0. DO0

i00 CONTINUE

DO 145 IR(7_=l, 3

DO 125 ICOL=I,18

125 P (IRON, ICOL) =0.0DO0

DO 135 J_OL=I,16

135 BE(IROW,JCOL) =0.0DO0

145 CONTINUE

2OO

N5=15" (5 )
N5=I6" (5+I5 )

N7=I 7" (5+I5+I6 )

N8=I8" (5+I5+I6+I7)

IF (N5._.0) N5=8

IF (N6.EQ.0) N5=8

IF (N7.EQ.O) N7=8

IF (N8.EQ.0) N8=8

S (i, i)=i. 0DO0/E

s
S (i, 3)=0.0DO

S (2, I)=-NU/E

S (2,2)=1.0D00/E

S (2, 3)=0.0DO

S (3, i)=0.0DO

S (3, 2)=0.0D0

S (3, 3) =2. DO* (I •DO+NU)/E

DO 500 II=I,NINT

ZE=GS (II, NINT )

DO 500 JJ=I,NINT

ET=SS (JJ, NINT )

OPZ =i .D0+ZE

OMZ =i •DO-ZE
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250

OPE =I.D0+ET
OME =i. D0-ET
CMZSQ=I.D0-ZE**2
OMESQ=I.D0-ET**2

F(N5)=C5*(_4ZSQ*OPE/2.DO
F(_5) =C6*OMESQ*OMZ/2. DO

F (N7) =C7*CMZSQ*CME/2. DO

F (N8) =C8*CMESQ*OPZ/2. DO

F (i) =0.25D0*OPZ*OPE- (F(N5)+F (N8))/2 .DO

F(2 )=0.25D0*flMZ*OPE- (F (N5) +F (N6))/2 .DO

F (3) =0.2 5D0*C_4Z*_4E-(F(N6)+F (_;7))/2.DO

F (4)=0.25DO*OPZ*OME-(F (N7)+F (N8))/2.D0

_=0.0D00

YS--O. 0D00

DO 250 K=I,NN3DES

XS=_S+X(K)*F(K)

YS=YS+Y(K)*F(K)

CONTINUE

YSQ=YS*YS

_L_U=_S*_SQ

Ycu=YS*YSQ

P(1,1)=1.0D00
P(I, 4)=YS

P(I, 6)=XS

P(I, 8)=YSQ

P(I,10)=XSQ
P(l, ii) =2. D0*XS*YS

P (I,13)=YCU

P(l, 15)=XL_U

P (i,16) =_S*YSQ

P(I, 17) =XSQ*YS

P(2,2)=I.ODO0

P(2,5)=XS

P (2, 7)=YS

P (2,9) =XSQ

P (2, IO)=_SQ

P(2,12)=P(I, Ii)

P (2,14)=XL_U

P (2,15)=3. DO*XS*YSQ

P (2,17)=YCU/3. DO

P (2,18) =XSO*YS

ii0



350

P(3,3)=1.01300
P(3,6) =-YS
P(3, 7)=-_S
P(3,10)=-P(I, ii)
P(3, II)=--YSQ
P(3,12)=-XSQ
P(3,15)=-3. DO*XSQ*YS
P(3,16)=-YUU/3. DO
P(3,17)=-_S*YSQ
P (3,18) =-]_3U/3. DO

DZ (N5 )=-C5*ZE*OPE

DE(N5 )=+C5*OMZSQ/2. DO

DZ (N6) =-C6*CMESQ/2. D0

DE (N6) =-C6*OMZ* ET

DZ (N7) =-C7" ZE*CME

DE(N7) =-C 7*OMZSQ/2. DO

DZ (N8) =+C8*(_4E.SQ/2. DO

DE(N8) =-C8*OPZ*ET

DZ(I )=0.2 5DO*OPE- (DZ (N5) +DZ (NS))/2.D0

DE(I )=0.25DO*OPZ-(DE (N5)+DE (N8))/2. DO

DZ (2)=-. 2 5D0*OPE-(DZ (N5) +DZ (N6))/2 .DO

DE(2 )=0.2 5DO*OMZ- (DE (N5) +DE (N6))/2 .DO

DZ (3)=-.2 5DO*(]_IF_,-(DZ (N6)+DZ (N7))/2.DO

DE(3 )=-. 2 5DO*OMZ- (DE (N6) +DE (N7))/2 .DO

DZ (4)=0.2 5DO*CME-(DZ (N7)+DZ (N8))/2.DO

DE (4) =-. 2 5DO*OPZ- (DE (N7) +DE (NS))/2. D0

Jll=0. 01300

J12=0.0D00

J21=0.0D00

J22=0.0D00

DO 350 K=I,NSDDES

Jll=f)Z (K) *X (K)+JII

Jl 2=DZ (K) *Y (K) _/I 2

J21=DE (K) *X(K)+J21

J22=DE (K) *Y(K) +J22

CONTINUE

DETJ=J 11 *J22-Jl 2 "0"21

WT_ (II,NINF) *GW (JJ, NINr) *?*DETJ

DO 400 J=I,NBETA

DO 370 K=I, 3

D[IM (K) =0.0D00
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370

38O

39O

4O0

435

445

DO 370 L=I, 3

DL_4(K) =DUM (K)+S (K,L) *P (L,J)

DO 390 I=J, NBETA

Hr_P=0.0D00

DO 383 L=I,3

HY_4P--Hr _4P+P (L, I) *DUM (L)

H(I,J)=H (I, J)+HT_*WTH

CONr INUE

DO 435 I=l, (NDOF-I),2

BE (i, I )=DDX( (I+l)/2 )

BE(3, I )=DE#f((I+l)/2)

CONTINUE

DO 445 I=2,NDOF,2

BE (2, I )=DDY(112 )

BE(3, I )=DDX( I/2 )

OONrINUE

450

50O

550

600

625

650

675

WTG_(_ (II, NINT) *_ (JJ, NINT )_f

DO 450 I=l, hBETA

DO 450 J=l, NDOF

DO 450 K=I, 3

G (I, J)=G (I, J)+P (K, I )*BE(K, J) *WTG

CONTINUE

CALL MXINVCH, 18, IERH, NBErA)

WRITE (6,550 )IERH

FO_4AT(/, ° Inversion Indicator Returned

- SSP( M) = °,13)

DO 625 I=I,NBETA

DO 625 J=l, NDOF

HG(I, J)=0.0D00

DO 600 K=I, hBETA

HG(I, J)=HG(I, J)+H (I,K) *G (K, J)

HINVG (I,J)=HG (I, J)

DO 6 75 I=l, NDOF

DO 675 J=I,NDOF

STMI_( I,J) =0.0D00

DO 650 K=I, hBETA

STMD(( I,J) _TMYX( I,J)*G (K, I )*HG (K, J)

REAi_ (I,J) _TMTX (I,J)

IF(IO._.0) GO TO 800
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WRITE(6,700)NhDDES,NBETA
700 FORMAT(/,° [ K 3 Mmtrix Returned By § HISQUE t°/

_o SPECIFIED: Number of Nodes = o, Ii, /

_o Number of Betas = °,I2)

DO 725 KRON=I, NDOF

725 WRITE(6,775) (REALK(KROW,KCOL) ,KCOL=I, NDOF)

775 FOI_@kT(/, IX, 8(E13.7,3X),/,IX, 8(EI3.V,3X) )

800 REVdRN

i000 ASTRN_ _NDDES o

BSTRNK_°OUP OF RANGE. o

WRITE (6, 5000 )ASTRNG, NNODES, BSTRNG

STOP

2OO0 ASTRN[_ °BETAS°

BSTRN_ °INSUFFICIENT. o

GO TO 4000

3000 ASTRN_ °BETAS °

BSTRIqg=°OUF OF RANGE. o

4000 WRITE (6, 5000 )ASTRNG, NBETA, BSTRNG

5000 FORMAT (IX,

--o ******************************************************* o t / e

-° * PROGRAM ABORT ACTIVATED BY § HISQUE T : .o,/,

_o . SPECIFIED NLMBER OF °,A5, ° [°,I2,°] IS °,A13, ° .o

--e/r o ******************************************************** )

STOP

END

lIB



i00

SUBROL_INEQUEST(XS,YS,I5, I6, I7, I8, NBErA,HINVG,DISP,STRESS)

DD4_ ION DISP(1), STRESS(1), HINVG([',BETA,1)
DIMENSIONP(3, 18),PHINVG(3,16)

NNODES---4+I5+I6+I7+I 8
NDOF =2*NNODES

DO100 IROW=I,3
DOi00 ICOL=I,18
P(IROW,ICOL)=0.0D00

P(I, i)=i .0D00
p(1,4)=xs
P (i, 6)=XS

P (i, 8)=YS*'2

P (I, i0) =XS**2

P (i, ii)=2. DO*9_*YS

P (i, 13) =YS**3

P (i, 15)=MS*'3

P (i, 16) =XS* (YS**2)

P(l,l 7)=(_*'2)*YS

P(2,2)=i. 0D00

P (2, 5)=XS

P(2, 7)=YS

P (2, 9)=_*'2

P (2,10)=YS*_2

P (2,12)=2.D0*_*YS

P (2,14) =XS**3

P (2,15) =3 .D0*_* (YS**2)

P (2,17)= (YS**3)/3. DO

P (2,18)= (XS**2) *YS

P (3,3)=i. ODO0

P(3, 6) =-YS

P(3,7)=-_

P (3,10)=-2. DO*_*YS

P (3, ii) =-YS**'2

P (3,12)=-_*'2

P (3,15)=-3. DO* (XS**2) *YS

P (3,16)= (YS**3) / (-3.DO)

P(3,17) =-_ * (YS**2)

P (3,18)= (XS**3) / (-3. DO)

DO 200 I=i,3

DO 200 J=l, NDOF

PHINVG( I,J)=O. 0

DO 200 K=I, NBETA
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PHINVG(I, J )=P(I, K)*HINVG(K,J )+PHINVG(I,J )
200 CONPLNUE

DO300 I=i,3
STRESS(I)= 0.0
DO300 K=I, NDOF
STRESS(I) =PHINVG(I, K)*DISP(K)+STRESS(I )

3OO CONTINUE

RETURN

E_K)
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B.2 ELHMENT HEL710

The following variables are required by subroutine HEL710:

E =Young °s modulus

NU =Poisson °s ratio

T =El ement thickness

X --Vector of nodal coordinates, x

Y --Vector of nodal coordinates, y

Ix =0(i) if node x is absent(present)

IO =Output control variable

The following variables are returned by subroutine HEL710:

HINVG =Product of [H]inv. and [G] mtrices

REALK =_lement stiffness matrix

Subroutine HEISTR ccml0utes the stress vector STRESS frcm the

following variables:

XS,YS

DISP

=Coordinates of point at _nich stress is desired

_atrix returned by subroutine HEL710

--Vector of nodal displacements
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SUBROUTINEHEL710(E,NU,T,X,Y, I8, I9, If0, IO,HINVG,REALK)

IMPLICIT REAL*8(A-H,O-Z)
DOUBLEPRECISIONNU,JII,JI2,J21,J22

REALHINVG,REALK

DIMENSIONX(1) ,Y(1), ZETA(5),W(5 )

DIMENSION DLM(3 ),F(10) ,DZ(10) ,DE(10)

DIMENSION S (3,3) ,P(3,25),H(25,25)

DIMES_ION BE(3,20) ,G(25, 20)

DIMEh_ION HG(25,20) ,STMTX(20,20)

DIML_k_ION HINVG(25, I), REAI/_( (2" (7+I8+I9+Ii0)),I)

DDX(M)=+J22*DZ(M)-J12*DE(M)

DDY(M)=-J21*DZ(M)+JII*DE(M)

E_TA ZETA/ -. 90617984593866 4DO,

2 -. 53 84693 i0105683D0, •000000000000000DO,

3 .538469310105683D0, .906179845938664D0/

DATAW/
2 .4V 2 704993G6D0,
3 .47862 8670499366D0,

.23692688505618gD0,

.568888888888889D0,

.236926885056189D0/

D8 =18

D9 =I9

DI0=II0

NhK)DES= 7+I 8+I 9+I i0

NDOF =2*NNODES

DO 150 IR=l,25

DO I00 ICH=I,25

i00 H(IR, ICH)=O. 0D00

DO 125 ICG=I,20

125 G(IR, ICG)=O. 0D00

150 CONTINUE

DO 250 IRC_=I, 3

DO 200 ICOL=l,25
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200 P(IR(]W,ICOL)=0.0DO0
DO 225 ,_2OL=1,20

225 BE(IRCI4,JCOL) =0.0D00

250 CON? INUE

S (i, I)=I.D0/E

S (i, 2)=-NU/E

S (i, 3)=0.0DO/E

S (2,1)=-NU/E

S (2,2)=i. D0/E

S (2, 3)=0.0D0/E

S(3, i)=0.0D0/E

S (3,2)=0.0D0/E

S(3,3)=2. DO* (I. D0+NU)/E

DO 500 II=l,5

Z_--ZETA(I I)

DO 500 JJ=l, 5

ET=ZETA(JJ)

OPZ=I .D0+ZE

OMZ=I. DO-Z E

OP_I. D0+ET

OME=I. D0-ET

HP_. 5D0 +ST

HME=. 5DO-ET

ESQ=ST*h-T

EO3=ET*ESQ

EOU=ST*ECU

OMZSQ=I. D0-Z E*ZE

0_=i. DO-ESQ

F( 8)= D8*OMZSQ*OME/2.DO

F( 9)= D9*QMESQ*OPZ/2.D0

F (i0) =DI 0*(X.IZSQ*OPE/2. DO

F(1)=+HPE*ET*}_4E*CME*QMZ/3.D0-F(8)/2.D0

F(2)=OPZ*OME/4.D0-(F( 8)+F( 9))/2.D0

F(3)=OPZ*OPE/4.D0-(F(9)+F(10) )/2.D0

F (4) =-(3PE*HPE*ET*HME*QMZ/3. D0-F (10)/2. DO

F (5 )=+OPE*HPE*ET*CME*QMZ/. 75D0

F (6) =+2. DO*OPE*HPE*HME*OME*CMZ

F (7) =-OPE*ET*_IME*QME*CMZ/. 75D0

DO 300 K=I,NIkDDES

XS=XS+X (K)*F(K)
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30O
Y_+Y(K)*F(K)
_INUE

_Q=XS*XS
XL_=XS*XSQ
XQU=XS*XCU
YSQ=YS*YS
YCU=YS*YSQ
YQU=YS*YCU

P(I, 1)=1.DO0
P(I, 4)=YS
P(I,6)=_
P(I, 8)=XSQ
P(I, 9)=2. DO*XS*YS
P(I, 10)=Y_SQ
P(i, 13)=XE_
P(i,14)= (>_Q)*(YS)
p(1,15)=(xs )*(YSQ)
P (i, 16)=YCU

P (1,19) =xQu
P (l,20)=(>_-_d) *YS

P (i, 21)=(XSQ) * (YSQ)

P (i, 22)=>_* (YCU)

P (i, 23)--YQU

P (2,2)=I.D00

P(2,5)=XS

P (2,7) =YS

P(2, 8)=YSQ

P (2, ii) =2.D0*XS*YS

P(2,12) =XSQ

P (2,13)=3.D0" (>_)* (YSQ)

P(2,14)=(YCU)/3 .DO

P (2,17)=>_U

P(2,18)=(XSQ) *YS

P(2,19) =6. D0* (XSQ)* (YSQ)

P(2,20) =XS* (YCU)

P (2,21)=(YQU)/6.0D00

P (2, 24) =4. DO* (XCU) *YS

P(2,25)=XQU

P(3,3)=1 .DO0

P (3, 6)=-YS

P(3, 7)=-XS

P(3, 8)=-2. D0*XS*YS

P(3,9) =-YSQ

P (3,11)=-XSQ

P (3,13)=-3. DO* (XSQ) * (YS)
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P(3,14)=->_* (YSQ)
P(3, 15)=-(YCU)/3. DO
P(3,18)=- (XL_J)/3.DO
P(3,19)=-4. DO*(XCU)*YS
P(3,20)=-3 .DO*(XSQ)* (YSQ)/2.D0
P(3,21)=-2. DO*XS*(YCU)/3.DO
P(3,22)=(YQU)/-4.DO
P(3,24)=-XQU

DZ(8) = -D8*ZE*(IME
DE( 8)=-D8*CMZSQ/2.DO
DZ( 9)= +D9*_/2.DO
DE( 9)=-D9*OPZ*ET
DZ(i O)=-DI0*ZE*OPE
DE(I0)=+DI0*CMZSQ/2.DO

DZ(1)=(EQU-EC[_((ESQ-ET)/4.DO))I(-3.DO)-DZ(8)/2.DO
DE (i)= (4. DO*ECU-3. DO*ESQ+. 2 5D0-ET/2. DO) *C_4Z/3. DO

- -DE(S)/2. DO

DZ (2)=+CME/4.D0-0.5DO* (DZ (8)+DZ (9))

DE(2)=-OPZ/4.DO-O. 5D0* (DE(8)+DE(9) )

DZ (3)=+OPE/4. DO-O. 5DO* (DZ (9) +DZ (i0) )

DE(3 )=+OPZ/4. D0-O. 5DO* (DZ(9)+DE(10))

DZ(4)=( QU+ECU-(ESQ+ET)/4.DO)/(-3.DO)-DZ(I0)/2.DO
DE(4) = (4. DO*EaJ+3. DO*ESQ-. 25D0-ET/2. DO) *OMZ/3. DO

- -DE (i0)/2 .DO

DZ (5)= (EQU+. 5DO*ECJ-ESQ-ET/2 .DO)/. 75D0

DE (5) =- (4. DO*ECU+I. 5DO*ESQ-2. DO*ET-. 5DO) *C_4Z/. 75DO

DZ (6)=-2. DO* (HQU-I. 25DO* ESQ+. 25D0)

DE (6)=+2. DO* (4.DO*ECU- 2.5DO*ET) *CMZ

DZ (7 )=+ (_U-. 5DO*ECU-ESQ+ET/2. DO )/. 75D0

DE (7)=- (4.DO*ECU-I. 5DO*ESQ-2. DO*ET+. 5DO) *CMZ/. 7 5DO

Jll=0. ODO0

Jl 2=0. OD00

J 21=0. ODO0

J22=0.0D00

350

DO 350 K=I,NhDDES

JII=DZ (K) *X(K)_JI 1

J 12=DZ (K) *Y (K)+JI2

J21=DE (K) *X(K) _k721

J22=DE(K) *Y(K)+J22

CONTINUE

DETJ=J 1l*J22-J 12"J21

WTH=W (II )*W (JJ) *DETJ*T

DO 400 J=l, 25

120



370

383
390
400

435

445

450

5O0

55O

600
625

650

DO 370 K=I,3

DtM(K)=0.0D00

DO 370 L=I,3

D[IM (K)=DtM (K) +S (K, L) *P (L,J)

DO 390 I=J,25

HT_[_--0.0D00

DO 380 L=I,3

HTE_=-HT E_P+P (L, I )*DtM (L)

H (I,J) =H (I,J) +hT_4P*WTH

CONTINUE

DO 435 I=l, (NDOF-I), 2

IT _MP=-(I+l )/2

BE (i, I )=DDX(ITH_4P)

BE(3, I )=DDY(ITI94P)

CONTINUE

DO 445 I=2,NDOF,2

BE(2, I )=DDY( ITE_P )

BE (3, I )=DDX (ITEMP)

CON? INUE

WTG=W(II) *W (JJ) *T

DO 450 I=I,25

DO 450 J=I,NDOF

DO 450 K=I, 3

G(I, J)=G (I, J)+P (K, I) *BE(K, J) *WTG

OONrINUE

CALL MXINV(H, 25, IERH, 0)

WRITE (6,550) IERH

FOP_MAT(IX, ° INVERSION INDICATOR REr_

- BY SSP(IBM) = °,I3)

DO 625 I=1,25

DO 625 J=l, NDOF

HG(I, J)=O. 0D00

DO 600 K=I,25

HG( I,J)=HG( I,J) +H (I,K) _3 (K, J)

HINVG(I,J) =HG (I,J)

DO 675 I=I,NDOF

DO 675 J=I,NDOF

STMD(( I,J) =0.0D00

DO 650 K=1,25

STMI_( I,J )_TMI"X (I, J )+(3(K, I )*HG (K, J)
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675 RFALK(I,J) _TMTX(I, J)

IF (IO. I_Q.0) GOTO 999
WRITE(6,900)
DO700 KR=I,NDOF

700 WRITE(6,800)(REALK(KR,KC),KC=I,NDOF)
_0 _(I, ° °,i_13.5,1,° °,i_13.5)
900 FORMAT(//, ° [ K ] matrix returned by § HEL710 t o//)

999 RETI/RN

END
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I00

SUBROUTINEHELSTR(XS,YS,18,19, Ii0, HINVG,DISP,STRESS)

DIMENSIONP(3,25) ,HINVG(25, i) ,PHINVG(3,20)

DIMENSION DISP(2* (7+I8+I9+Ii0)) ,STRESS(3 )

DO i00 IROW=I,3

DO i00 ICOI,=I, 25

P (IROW, ICOL)=0 .DO

P(I,I)=I.DO0
P (I, 4)=YS

P(I, 6)=XS

P(I, 8) =XS**2

P (i, 9)=2. DO*XS*YS

P (i, IO)=YS**2

P (i, 13) =XS**3

P (i, 14)= (_*'2) * (YS)

P (i, 15) = (XS) * (YS**2)

P (i,16) =YS**3

P(l, 19) =XS**4

P (i,20)= (_B**3) *YS

P (i, 21)= (XS**2) * (YS**2)

P (1,22)=XS* (YS**3)

P (i, 23) =YS**4

P(2,2)=I.D00

P(2, 5)=XS

P(2, 7)=YS

P (2, 8)=YS**2

P (2, Ii) =2.DO*>_*YS

P(2,12)=XS*'2

P (2,13)=3.D0" (XS)* (YS**2)

P (2,14)= (YS**3)/3. DO

P (2,17) =_*'3

P(2, 18)= (XS**2) *YS

P (2,19)=6.1)0" (XS**2)* (YS**2)

P (2,20) =XS* (YS**3)

P (2,21)= (YS**4)/6.0D00

P (2,24)=4.190 * (XS**3) *YS

P (2,25)=>_*'4

P(3,3)=I. DO0

P(3, 6)=-YS

P (3,7) =->_B

P (3, 8)=-2. DO*XS*YS

P (3,9)=-YS**2

P (3, II)=-XS**2

P (3,13) =-3. DO* (XS**2) * (YS)

P (3,14)=-XS* (YS**2)
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200

3OO

P(3,15) =-(YS**3 )/3. D0
P(3,18) =- (XS**3)/3.D0
P(3,19)=-4. DO*(XS**3)*YS
P(3,20)=-3 •D0*(_*'2)* (_S*'2)/2 .D0
P(3,21) =-2. D0*XS*(YS**3)/3 .DO
P(3,22)= (YS**4)/-4.D0
P(3,24) =-I. DO*(XS**4)

NNODES=7+I8+I9+II0
NDOF =2*NNODES

DO200 I=i,3
DO200 J=l, NDOF
PHINVG(I,J) =0.0
DO200 K=I,25
PHINVG(I, J) =P(I, K) *HINVG(K,J)+PHINVG(I, J)
OONTINUE
DO300 I=l, 3
STRESS (1)=0.0
DO 300 K=I, NDOF

STRESS( I )=PHINVG (I, K) *DISP (K) +STRESS (I)

CONTINUE

RETURN

END
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B.3 ELEMENP PET4/12

The following variables are required by subroutine PET4/12:

E =Young °s modulus

NU =Poisson °s ratio

T =Element thickness

X --Vector of nodal coordinates, x

Y --Vector of nodal coordinates, y

IO =Output control variable

The stiffness matrix, REALK, is returned by subroutine PET4.

Subroutine PETSAP computes the stress vector STRESS frcm the

following variables:

XS,YS

RZ

DISP

=Coordinates of point at which stress is desired

=Radius of the circular hole

--Vector of nodal displacements
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****************************************************************
C KUROSHKAFIE DEL-q_MBER1980, M.I.T. *
C************************************************************ w**

SUBNOUPINE P_T4( E,NU, T, X, Y, IO, _)

C DESCRIPP ION: *

C SLUBROUTINE PET4 DETERMINES THE STIFFNESS MATRIX OF A *

C FOUR NDDE MEMBRANE ELHMENF WITH A _]ILT IN CIRCUT_AR *

C TRAC? ION-FREE EDGE: *

C *

C E =YOUNG°S MODULUS. *

C NU=POISSON°S RATIO. O 3 *

C T --THIC_<IqESS. • •

C • •

C • •

C • •

C 4 O •

C • •

C • •

C O. • • O *

C 1 2 *

C *

I_PLICIT REAL*8(A-H,O-Z)

REAL HINVG, REAl/K(8, 1 )

CCIVMDN /PETIX2/HINVG (12, S)

DOIBLE PRECISION J, LNGT, L,NU, NU_ NUY, NUT

DIMENSION X(1),Y(1) ,GS (7) ,C_(7),DLM(3)

DIMENSION S (3,3) ,P(3, 12) ,H(12, 12)

DIMENSION NUT (3,2) ,L(2,8) ,G(12, 8)

DIMEh_ION HG(12, 8) ,STMD((8, 8)

n_TA GS/
2 -0.741531185599394D0,

3 0.000000000000000DO,

4 0.741531185599394D0,

-0.949107912342759D0,

-0.405845151377397D0,

0.405845151377397130,

0.949107912342759D0/

I_TA GW/

2 0.279705391489277D0,

3 0.417959183673469D0,

4 0.279705391489277D0,

0.129484966168870D0,

0.3 81830050505119D0,

0.381830050505119D0,

0.129484966168870D0/

NDOF = 8

NBETA=I 2

DO 75 IR=I,NBETA
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DO25 ICZ-{=I,NBLTA
25 H(IR, ICH)=0.D00

DO50 ICG=I,NDOF
50 G(IR, IO3)=0.D00
75 CONTINUE

RZ,-_SQRT(X(1)**'2+Y(l)**2)
CALL ANGI_Z(X(2),Y(2),THETA2)

CALL _(X(3 ),Y(3 ) ,THETA3 )

THEPA0= (THETA3-THETA2)/2.0D00

ALPHA =(THETA3+THETA2 )/2.0D00

CI= (X(2)*Y (3)-X(3) *Y (2))

C2=X (2)-X(3 )

C3=Y(2 )-Y (3)

IFLA(9=0

S (I, I)=I.D0/E

S (i, 2)=-NU/E

S (i, 3)=0.0D0

S (2,1) =-e_U/E
S (2,2)=I.DO/E
S(2, 3)=0.0D0

S (3, I)=0.0D0

S(3,2)=0.0D0

s (3,3)=2.D0"(1.poem)/E

DO 300 II=l, 7

ZE=<_ (II)

DO 300 JJ=l, 7

ET=GS (JJ)

T HETA=Z E*T HET/XD-hKLY'HA

PHI=C1/( C2 *DS IN (THETA)--C.3*DCOS (THLTA))

R=((PHI-RZ)/2.0D0) *Eq_ (PHI+RZ)/2.0D0

J--THETA0* ( ((PHI-RZ) **2) *ET+IZ_II**2-RZ**2)/4.D0

i00 _S IN(THETA)

CT =[L'(_ (THETA)

P(I,

P(I,

P(I,

P(I,

P(l,

P(I,

P(I,

P(l,

1 )=2. DO* (i. D0-RZ/R)

2)= (i. D0- (RZ**2/R**2))*CT

3)=(1. DO-( RZ* *'2/R* *'2) )*ST

4)=3 .DO* (R-(RZ**2/R))

5)=2. DO* (R- (RZ**3/R**2 ) )*CF

6)=2 .DO* (R-(RZ**B/R**2) )*ST

7)=4. DO* (R**2-( RZ**3/R) )

8) =3. D0* (R**2- (RZ**4/R**2)) *CT
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P(l, 9)=3.D0*(R**2-(RZ**4/R**2) )_ST
P(1,10)=5 .DO*(R**3- (RZ**4/R))
P(i, 1i) =4. D0 * (R**3- (RZ**5/R**2) )*CT

P (I, 12) =4.DO* (R**3- (RZ**5/R**2)) *ST

P(2, I)=2.D0

P (2,2)=2.D0*CT

P(2, 3)=2. D0*ST

P (2,4)=6.D0*R

P(2, 5)=6. D0*R*CT

P (2,6)=6. D0*R*ST

P(2, 7)=i 2.D0* (R**2)

P(2, 8)=12. D0* (R**2)*CT

P(2,9) =12. D0* (R**2) *ST

P (2,10)=20.DO* (R**3)

P (2, ii) =20. D0* (R**3) *CT

P(2,12)=20 .DO* (R**3) *ST

P(3,

P(3,

P(3,

P(3,

P(3,

P(3,

P(3,

P(3,

P(3,

P(3,

P(3,

P(3,

I)=0.D00
2)=(1 .D0- (RZ**2/R**2)) *ST

3)=( (RZ**2/R*'2)-1.DO)*CT
4)=O.D00

5)=2. DO* (R- (RZ**3/R**'2) )*ST

6 )=2. DO* ((RZ**3/R* *2 )-R) *Cr

7)=0.D00

8)=3. DO * (R**2-(RZ**4/R**2))*ST

9 )=3. DO* ((RZ* *4/R* *2 )-R* "2) *CT

zo):o.Doo
11) ---4.DO* (R**3- (RZ**5/R**2 ))*ST

12)=4. D0* ((RZ**5/R**2)-R**3) *CT

IF(IFLAG. EQ.I) GO TO 400

WTH=J*(_(II) *GW (JJ)

DO 200 KC=I, NBETA

DO 125 NN=I,3

DI/vI(NN)=0. DO0

DO 125 KR=I,3

125 DLMCNN)=DLMCNN)+S (NN, KR)*PCKR,KC)

DO 175 KR=4_, NBETA

HT_=O. 0DO0

DO 150 NN=I,3

].50 HT_E_:_'P (NN, I<R)*DLM(NN)

175 H (KR, _) =H (KR, _C) +HT _*W?H

200 CON? INUE

300 CONT LNUE
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CALLMXINV(H,NBETA,IERH,0)

IFLAG=I

DO800 IX=l, 3
XA=X(IX)
XB=X(IX+I)
YA=Y(IX)
YB=Y(IX+I)

LNGT=DSQRT((XA-XB)*'2+ (YA-YB)**2 )
CALL A_LE( (XS-_), (XA-XB),CME_)
NUX=DCOS (C_r_)
NUY=OSIN(CMECA)

DO 700 1 I=i, 7

XS=GS (II )* (XB-XA)/2.0D0+(XB+XA )/2.0D0

YS=GS (II) * (YB-YA) /2. 0[30+(YB+Y_)/2.0DO

350 R=DSQRT (XS**'2+YS**2)

CALL ANGLE (XS, YS,THETA)

GO TO i00

4O0

500

NUT (i,l)_a2X*(CT**2)+NUY*CT*ST
NUT (2,1) =N[PX* (ST**2)-NLrf*CT*ST

NUT (3, i )=NUY* (CT**2-ST**2)-2. D0*NUX*CT*ST

NUT (i, 2) =NUY* (ST**2) +N[D(*CT*ST

NUT (2,2) =6HJY* (CT**2)-NLD(*CT*ST

NUT (3,2) =NUX* (CT* "2-8T*'2 )+2. D0*NUY*CT*ST

DO 500 IROW=I, 2

DO 500 ICOL=I, 8

L (IROn, ICOL) =0. ODO0

CONTINUE

EN?I= (i.D0-<3S (II))/2.0[30

ENT2= (i. D0+C_ (II))/2.0DO

L(I, (2*IX-I))=ENTI

L(I, (2*IX+l))=L---'NT2

L(2, (2*IX)) =ENTI
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L(2, (2"IX+2))=ENT2

WT_ (I I) *I/_GT/2.D0

525

DO600 _2=I,NDOF
DO525 NN=I,3
DUM(NN)=0.D00
DO525 KR=I,2
DLM(NN)=DiM(NN)+NUT(NN,KR)*L (KR,KC)

550
575
600

DO575 KR=I,NBETA
GTE_P=-0.O1300
DO550 NN=I,3
GT_m=GTh_+P(NN,KR)*DUM(NN)
G(KR,K_)=G (KR, _ )+6T_MP*WTG

CONT INUE

700 CONTINUE

800 CONTINUE

825

85O

DO 850 M=I, _ETA

DO 850 N=I, NDOF

HG(M,N)=0.0D00

DO 825 K=I, NBETA

HG (M, N) =HG (M, N) +H (M, K) *G (K, N)

HINVG(M,N)=HG(M,N)

875

900

DO 900 M=I,NDOF

DO 900 N=I, NDOF

STMTX(M, N) =0. 01300

DO 875 K=I, NBETA

STMI"X (M, N) =STMPX(M, N) +G (K,M) *HG (K, N)

REAJ__( M,N) _TMI"X (M, N)

IF(IO.EQ.O) GO TO i000

WRITE(6,975)

DO 925 KR=I,8

925 WRITE(6,950) (REALK(KR,KC) ,KC=I, 8)

950 FO_I%T (IX, 8 (El 4.5,2X)//)

975 FORMAT(//, ° [ K ] Matrix Returned By Subroutine § PET4/12 t

- oi/)

i000 RETURN

END
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SUBROUTINEPETSAP(XS,YS,RZ,DISP,STRESS)
Ce4M3N IPeTIX21HINVG (12, 8)

DIMENSION DISP(I ),STRESS(I )

DIMEh_ION P(3,12),PHINVG(3,8)

DOIBLE PRECISION XD, YD, THETAD

R_QRP (>_* "2 +YS* *2 )

XD=XS

YD=YS

CALL AhKILE (XD, YD, THETAD)

THE A--THETAD

S_ IN(THETA)

CT=CT_ (THETA)

P(I,

P(I,

P(I,

P(I,

P(I,

P(I,

P(I,

P(I,

1)=2.o* (1.0-RZ/R)
2 )=(1.0-(RZ**2/R**2) )*CT

3)=(1.0-(RZ**2/R**2 ) )*ST

4)=3.0" (R- (RZ**2/R))

5)=2.0* (R-( RZ**3/R**2 ) )*CT

6 )=2.0* (R- (RZ**3/R**2)) *ST

7)=4.0* (R**2-( RZ**3/R) )

8)=3.0* (R* "2- (RZ* *4/R* *2 ))*CT

P (i, 9)=3.0* (R**2-( RZ**4/R**2 ))*ST

P (i, i0) =5.0* (R**3- (RZ**4/R))

P (i, ii)=4.0* (R**3-( RZ**5/R**2 ) )*CT

P (i, 12)=4.0* (R**3- (RZ**5/R**2)) *ST

P(2,1)=2.0

P(2, 2)=2.0*CT

P(2,3)=2.0*ST

P (2, 4)=6.0"R

P (2,5) =6.0*R*CP

P (2, 6)=6.0*R'ST

P(2, 7)=i 2.0* (R**'2)

P(2, 8)=12.0* (R**2)*C?

P(2,9)=12.0* (R**2) *ST

P (2, i0)=20.0* (R**3)

P (2, ii )=P (2, i0) *CT

P (2,12)=P (2,10)*ST

P(3,

P(3,

P(3,

P(3,

P(3,

i)=0.00
2)=(i.0-(RZ**2/R**2))*ST
3)=((RZ**2/R**2)-i.0)*CT
4)=o. oo
5)=2.o* (R-(RZ**3/R**2))*ST
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i00

200

P(3,6)=2.0"((RZ**3/R**2)-R) *CT
P(3,7)=0.00
P(3, 8)=3.0* (R**2-(RZ**4/R**2) )*ST
P(3,9)=3.0" ( (RZ*"4/R*'2 )-R* *2) *CT
P(3, I0)=0.0
P(3,11)=4.0* (R**3-( RZ**5/R**2) )*ST
P(3,12)=4.0"((RZ**5/R**2)-R**3) *CT

DOi00 I=I, 3
DOI00 J=l,8
PHINVG(I, J)--0.0
DOi00 K=I,12
PHINVG(I, J) =P (I, K) *HINVG(K, J)+PHINVG(I, J)

CONTINUE

DO 200 I=i,3

STRESS (1)=O.0
DO 200 K=I, 8

STRESS (I )=PHINVG( I,K) *DISP (K) +STRESS (I )

CONTINUE

RETURN

END
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B.4 EL_MENPP_4_

The following variables are required by subroutine Pm-_P4X5:

E --Young °s modulus

NU =Poisson °s ratio

T =Element thickness

X --Vector of nodal coordinates, x

Y --Vector of nodal coordinates, y

IO =Output control variable

The stiffness matrix, REALK, is returned by subroutine PET4.

Subroutine PETSAP computes the stress vector STRF_S from the

following variables:

XS,YS

RZ

DISP

=Coordinates of point at which stress is desired

=Radius of the circular hole

--Vector of nodal displacements
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SUBROUTINEPET4(E,NU,T,X,Y,IO,REALK)

IMPLICIT REAL*8(A-H,O-Z)
REALHINVG,REALK(8,1 )
Ca,' ONIP lX21 n, G(5,8)
DOUBLE PRECISION J,iNGT,L,NU,NUX,5_JY,NUT

DIMEh_ION X(l ),Y(1) ,GS (7) ,(_4(7), DLM(3 )

DIMENSION S (3, 3),P(3, 5),H(5,5)

DIMENSION NUT(3,2) ,L(2, 8) ,G(5, 8)

DIMEh_ION HG(5, 8) ,STMTX(8, 8)

DATA GS/ -0.949107912342759D0,

2 -0.741531185599394D0, -0.405845151377397D0,

3 O.000000000000000DO, 0.405845151377397D0,

4 0.741531185599394D0, 0.949107912342759D0/

DATA GW/

2 0.2797053914892771)0,

3 O. 417959183673 469D0,

4 0.2797053914892771)0,

0.129484966168870130,

0.3 81830050505119DO,

0.3 81830050 50 511 gDO,

O. 1294849661688701)0/

N[X3F =8

NBETA=5

DO 75 IR=I, NBETA

DO 2 5 ICH=I, _3ETA

25 H (IR, ICH)=O-DO0

DO 50 ICC_I, NDOF

50 G (IR, ICG)=0. DO0

75 OONr INUE

RZ=DSQRT (X(i) **2+Y (i) **2 )

CALL ANGLE(X(2),Y(2),THErA2)
CALL A/g__Z(X (3) ,Y(3 ),THErA3 )

THL_TAO = (THETA3-q_HEFA2)/2.0[330

ALPHA = (THErA3_FHETA2)/2. ODO0

CI= (X (2) *Y (3)-X (3) *Y (2))

C2=X(2)-X(3)

C3=Y (2)-Y (3)

IFLAS=O
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s(i,1)=i.Do/E
S (i, 2)=-NU/E

S (i, 3)=0.0D0

S (2, 1)=-NU/E

S (2,2)=I.DO/E

S (2,3)=0.0D0

s(3,i)=o.oDo
S (3,2)=0.0D0

S (3, 3)=2.D0" (I.D0+NU)/E

100

DO 300 II=l, 7

Z_(II)

DO 300 JJ=l, 7

ET=GS (JJ)

T HETA=Z E*T HETA0 +ALPHA

FHI=CI/(C2*DSIN(THETA)-C3*ECOS (THETA))

R= ((PH I-RZ)/2.0D0 )_ (PHI+RZ)/2.0D0

J--THETA0* ( ((PHI-RZ) **2 )*ET+PH I* *2 -RZ* *2 )/4. DO

ST=DS IN(THETA)

CF :=[]COS(THETA)

S2T=DS IN(2. D0*THETA)

C2T=DCOS (2 .D0*THEPA)

P(I, i)=(i. D0-(RZ**2/R**2) )

P (i, 2)= (R- (RZ**4/R**3)) *CT

P (i, 3 )=(R- (RZ**4/R**3 ))*ST

P (i, 4)= (i .D0+3 .DO* (RZ**4/R**4)-4. D0* (RZ**2/R* *2) )*C.2T

P (i, 5 )= (I.D0+3. DO* (RZ**4/R**4)-4. DO* (RZ**2/R**2 ))*Z2T

P(2, I)= (I.D0+(RZ**2/R**2))

P (2,2)= (3. D0*R+ (RZ**4/R**3))*CT

P(2, 3)= (3.DO*R+ (RZ**4/R**3)) *ST

P (2,4) =(-i. DO-3. DO* (RZ**4/R**4)) *C2T

P(2, 5)= (-i. D0-3.DO* (RZ**4/R**4)) *S2T

P(3, i)=0.0D00

P(3, 2)=(R- (RZ**4/R**3)) *ST

P (3,3)=( (RZ**4/R**3 )-R) *CT

P (3,4)= (-i .[90+3.DO* (RZ**4/R**4)-2 .DO* (RZ**2/R**2)) *S2T

P (3,5)=(+1. D0-3. DO* (RZ**4/R**4)+2. DO* (RZ**2/R**2) )*C2r

IF(IFIAG. EQ.I) GO TO 400

WTH=J*GW (II) *GW (JJ)

DO 200 KC=I, NBETA
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125

150
175
2O0

3OO

DO125 NN=I,3
DHM(NN)=0.D00
DO125 KR=I,3
DLM(NN)---DtM(NN)+S(NN,KR)*P(KR,KC)
DO175 KR=KC,BBETA
HT_-_9.0D00
DO150 NN=I,3
HTmP--HTmP+P(NN,KR)*DU_(NN)
H(KR,KC)=H(KR,KC)*HPfIMP*WTH
CONTINUE

CONTINUE

CALLMXINV(H,NBETA,I ERH,0)

DO800 IX=I, 3

XA=X(LX)

XB=X(IX+I)

YA=Y(LX)
xm--Y(ix+i)

LNGI_-DSQRT((XA-XB)**2+(YA-YB)**2)
CA_ ANGLE((YB-_), (XA-XB),_EGA)
NUX=_)COS(OMECa)
_/Y=DSIN(e_EGA)

DO 700 II=i,7

XS=GS (II)* (XB-XA)/2.0D0+(XB+XA )/2.0D0

xs=ss(iI)*(YB-_)/2.0D0+(YS+_)/2.0D0

350 R=DSQRT (XS**2 +YS**2 )

CALL _ (XS, YS,THErA)

GOTO 100

400 NUT(l, 1 )=NUX* (CT**2)-_NUY*CT*ST

NUT (2, i) =NUX * (ST**2)-NUY*CT*ST

NUT (3, i)=NUY * (CT**2-6T**2)-2. DO*NUX*CT*ST

NUT (i, 2 )=NUY* (ST**2) +NUX*CT*ST

NUt (2,2) =6K3Y* (CT**2)-NUX*CT*ST

NUT (3,2) =NLPX'*(CT**2-ST**2)+2. D0*_rtDI*CT*ST
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DO500 IRO_=I,2
DO500 IOOL=I,8
L (IRf_, ICOL)=0.0D00

500 CONTINUE

525

55O
575
600

ENTI=(i. D0-GS(II))/2.0DO
ENT2=(I.D0+GS(II))/2.0D0

L(I, (2*IX-I))=ENTI
L(I, (2*IX+I))_2

L(2, (2*IX)) =ENTI
L(2, (2"IX+2))=ENT2

WTG=GW(I I) *LNGT/2.DO

DO600 KC=I,NDOF
DO525 NN=I,3
DLM(NN)=0.D00
DO525 KR=I,2
DNM(NN)=DLM(NN)+NUT(NN,KR)*L (KR,KC)

DO575 KR=I,NBETA
GT_P=0.0D00
DO550 NN=I,3
GT_ _MP+P(NN,KR)*DLM(NN)
G(KR,}q2)=G (KR, _ )+GPIIMP*WTG

CON? INUE

700

8OO

825

850

875

900

CONTINUE

CONTINUE

DO 850 M=I, NBETA

DO 850 N=I, NDOF

HG(M,N)=0.0D00

DO 825 K=I,NBETA

HG(M, N)=HG (M, N) +H(M, K) *G(K, N)

HINVG (M, N)=HG(M, N)

DO 900 M--I,NDOF

DO 900 N=I, NDOF

STMPX(M, N) =0.0D00

DO 875 K=I, NBETA

STMTX (M, N) _TX (M, N)+G (K, M) *HG (K, N)

REALK(M, N)_TMYX(M, N)
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IF(IO.EQ.0) GOTO i000
WRITE(6,975)
DO925 KR=I,8

925 WRITE(6,950)(REALK(KR,KC),KC=I,8)
950 FORMAT(IX, 8(EI4.5,2X)//)
975 FORMAT(//,° [ K ] Matrix Neturned By Subroutine § PET4X5t

°11)

i000 REPURN

E_K)
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SUBROUPINE PETSAP(XS,YS, RZ,DISP, STRESS)

C(IMM3N IPh-TLY21HINVG (5, 8)

DIMEN_;ION DISP(I ),STRESS (i)

DIMENSION P(3, 5), PHINVG (3, 8)

DOUBLE PRECISION XD, YD, THETAD

_QRT (XS**2+YS**2)

XD=XS

YD--YS

CALL ANGLE(XD, YD, THEPAD)

THEPA--THETAD

S_ IN(THETA)

CT=CX)S (THETA)

S2T=DSIN(2. D0*T HETA)

C2T =DCOS (2. D0*THEPA)

P (I, 1 )= (i. 0-( RZ**2 /R**2 ))

P(I, 2)= (R- (RZ**4/R**3))*CT

P (i, 3) = (R- (RZ**4/R**3 ))*ST

P(l, 4)= (i.0+3.0* (RZ**4/R**4)-4.0* (RZ**2/R**2)) *C2T

P (i, 5 )= (i. 0+3.0* (RZ**4/R**4)-4.0* (RZ**2/R**2 ))*S2T

P(2,

P(2,

P(2,

P(2,

P(2,

i)= (I.0+(RZ**2/R**2))

2)=(3 •0*R+ (RZ**4/R**3) )*CT

3 )= (3.0*R+ (RZ* "4/R*'3) )*ST

4)=(-1.0-3.0* (RZ**4/R**4))*C2T

5 )= (-i .0-3.0* (RZ**4/R* *4) )*S2T

P(3,

P(3,

P(3,

P(3,

P(3,

i)=o.ooo
2 )= (R- (RZ**4/R**3)) *ST

3)=( (RZ**4/R**3)-R)*CT

4) = (-i .0+3.0* (RZ**4/R* *4 )-2.0* (RZ* *2/R* *2 ))*S2T

5)=(+1.0-3.0* (RZ**4/R**4)+2.0* (RZ* *2 /R* *2 ))*C2T

i00

DO I00 I=1,3

DO i00 J=l,8

PHINVG (I,J)=0.0

DO i00 K=I, 5

PHINVG (I,J )=P (I,K) *H INVG (K, J )+PHINVG( I,J)

CONTINUE

DO 200 I=i,3

STP_SS (!)=0.0

DO 200 K=I, 8
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STRESS(I )=PHINVG(I, K)*DISP(K)+STRESS(I )
200 CONTINUE

RETURN
END
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